Table of Contents Author Guidelines Submit a Manuscript
Stem Cells International
Volume 2016 (2016), Article ID 9521629, 16 pages
http://dx.doi.org/10.1155/2016/9521629
Review Article

Mesenchymal Stem Cells as Therapeutic Candidates for Halting the Progression of Diabetic Nephropathy

1Sociedade Beneficente Albert Einstein, Albert Einstein Hospital, 05652 São Paulo, SP, Brazil
2University of São Paulo, 01246 São Paulo, SP, Brazil
3Federal University of São Paulo, 04023 São Paulo, SP, Brazil

Received 22 July 2016; Accepted 8 November 2016

Academic Editor: Dominik Wolf

Copyright © 2016 Janaina Paulini et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. S. Wild, G. Roglic, A. Green, R. Sicree, and H. King, “Global prevalence of diabetes: estimates for the year 2000 and projections for 2030,” Diabetes Care, vol. 27, no. 5, pp. 1047–1053, 2004. View at Publisher · View at Google Scholar · View at Scopus
  2. P. J. Held, F. K. Port, R. L. Webb et al., “The United States renal data system's 1991 annual data report: an introduction,” American Journal of Kidney Diseases, vol. 18, no. 1, pp. 1–11, 1991. View at Publisher · View at Google Scholar · View at Scopus
  3. J. L. Gross, M. J. De Azevedo, S. P. Silveiro, L. H. Canani, M. L. Caramori, and T. Zelmanovitz, “Diabetic nephropathy: diagnosis, prevention, and treatment,” Diabetes Care, vol. 28, no. 1, pp. 164–176, 2005. View at Publisher · View at Google Scholar · View at Scopus
  4. A. I. Adler, R. J. Stevens, S. E. Manley, R. W. Bilous, C. A. Cull, and R. R. Holman, “Development and progression of nephropathy in type 2 diabetes: The United Kingdom Prospective Diabetes Study (UKPDS 64),” Kidney International, vol. 63, no. 1, pp. 225–232, 2003. View at Publisher · View at Google Scholar · View at Scopus
  5. P. Hovind, L. Tarnow, P. Rossing et al., “Predictors for the development of microalbuminuria and macroalbuminuria in patients with type 1 diabetes: inception cohort study,” British Medical Journal, vol. 328, article 1105, 2004. View at Publisher · View at Google Scholar · View at Scopus
  6. C. T. Valmadrid, R. Klein, S. E. Moss, and B. E. K. Klein, “The risk of cardiovascular disease mortality associated with microalbuminuria and gross proteinuria in persons with older-onset diabetes mellitus,” Archives of Internal Medicine, vol. 160, no. 8, pp. 1093–1100, 2000. View at Publisher · View at Google Scholar · View at Scopus
  7. P. Fioretto and M. Mauer, “Histopathology of diabetic nephropathy,” Seminars in Nephrology, vol. 27, no. 2, pp. 195–207, 2007. View at Publisher · View at Google Scholar · View at Scopus
  8. B. Najafian, Y. Kim, J. T. Crosson, and M. Mauer, “Atubular glomeruli and glomerulotubular junction abnormalities in diabetic nephropathy,” Journal of the American Society of Nephrology, vol. 14, no. 4, pp. 908–917, 2003. View at Publisher · View at Google Scholar · View at Scopus
  9. P. Fioretto, M. W. Steffes, D. E. R. Sutherland, F. C. Goetz, and M. Mauer, “Reversal of lesions of diabetic nephropathy after pancreas transplantation,” New England Journal of Medicine, vol. 339, no. 2, pp. 69–75, 1998. View at Publisher · View at Google Scholar · View at Scopus
  10. E. B. Rangel, “The metabolic and toxicological considerations for immunosuppressive drugs used during pancreas transplantation,” Expert Opinion on Drug Metabolism and Toxicology, vol. 8, no. 12, pp. 1531–1548, 2012. View at Publisher · View at Google Scholar · View at Scopus
  11. R. Kandaswamy, M. A. Skeans, S. K. Gustafson et al., “OPTN/SRTR 2013 annual data report: pancreas,” American journal of transplantation, vol. 15, no. S2, pp. 1–20, 2015. View at Publisher · View at Google Scholar · View at Scopus
  12. C. W. Heilig, L. A. Concepcion, B. L. Riser et al., “Overexpression of glucose transporters in rat mesangial cells cultured in a normal glucose milieu mimics the diabetic phenotype,” Journal of Clinical Investigation, vol. 96, no. 4, pp. 1802–1814, 1995. View at Publisher · View at Google Scholar · View at Scopus
  13. C. Dai, J. Yang, S. Bastacky, J. Xia, Y. Li, and Y. Liu, “Intravenous administration of hepatocyte growth factor gene ameliorates diabetic nephropathy in mice,” Journal of the American Society of Nephrology, vol. 15, no. 10, pp. 2637–2647, 2004. View at Publisher · View at Google Scholar · View at Scopus
  14. V. Eremina, S. Cui, H. Gerber et al., “Vascular endothelial growth factor A signaling in the podocyte-endothelial compartment is required for mesangial cell migration and survival,” Journal of the American Society of Nephrology, vol. 17, no. 3, pp. 724–735, 2006. View at Publisher · View at Google Scholar · View at Scopus
  15. J. F. Navarro-González, C. Mora-Fernández, M. M. de Fuentes, and J. García-Pérez, “Inflammatory molecules and pathways in the pathogenesis of diabetic nephropathy,” Nature Reviews Nephrology, vol. 7, no. 6, pp. 327–340, 2011. View at Publisher · View at Google Scholar
  16. S. Dronavalli, I. Duka, and G. L. Bakris, “The pathogenesis of diabetic nephropathy,” Nature Clinical Practice Endocrinology and Metabolism, vol. 4, no. 8, pp. 444–452, 2008. View at Publisher · View at Google Scholar · View at Scopus
  17. G. A. Sivaskandarajah, M. Jeansson, Y. Maezawa, V. Eremina, H. J. Baelde, and S. E. Quaggin, “Vegfa protects the glomerular microvasculature in diabetes,” Diabetes, vol. 61, no. 11, pp. 2958–2966, 2012. View at Publisher · View at Google Scholar · View at Scopus
  18. M. Dominici, K. Le Blanc, I. Mueller et al., “Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement,” Cytotherapy, vol. 8, no. 4, pp. 315–317, 2006. View at Publisher · View at Google Scholar · View at Scopus
  19. A. Peister, J. A. Mellad, B. L. Larson, B. M. Hall, L. F. Gibson, and D. J. Prockop, “Adult stem cells from bone marrow (MSCs) isolated from different strains of inbred mice vary in surface epitopes, rates of proliferation, and differentiation potential,” Blood, vol. 103, no. 5, pp. 1662–1668, 2004. View at Publisher · View at Google Scholar · View at Scopus
  20. A. J. Friedenstein, R. K. Chailakhjan, and K. S. Lalykina, “The development of fibroblast colonies in monolayer cultures of guinea-pig bone marrow and spleen cells,” Cell and Tissue Kinetics, vol. 3, no. 4, pp. 393–403, 1970. View at Google Scholar · View at Scopus
  21. A. R. Williams and J. M. Hare, “Mesenchymal stem cells: biology, pathophysiology, translational findings, and therapeutic implications for cardiac disease,” Circulation Research, vol. 109, no. 8, pp. 923–940, 2011. View at Publisher · View at Google Scholar · View at Scopus
  22. A. I. Caplan, “Molecular and cellular differentiation of muscle, cartilage, and bone in the developing limb,” Progress in clinical and biological research, vol. 217, pp. 307–318, 1986. View at Google Scholar · View at Scopus
  23. M. A. Eglitis and É. Mezey, “Hematopoietic cells differentiate into both microglia and macroglia in the brains of adult mice,” Proceedings of the National Academy of Sciences of the United States of America, vol. 94, no. 8, pp. 4080–4085, 1997. View at Publisher · View at Google Scholar · View at Scopus
  24. G. C. Kopen, D. J. Prockop, and D. G. Phinney, “Marrow stromal cells migrate throughout forebrain and cerebellum, and they differentiate into astrocytes after injection into neonatal mouse brains,” Proceedings of the National Academy of Sciences of the United States of America, vol. 96, no. 19, pp. 10711–10716, 1999. View at Publisher · View at Google Scholar · View at Scopus
  25. Y. Sato, H. Araki, J. Kato et al., “Human mesenchymal stem cells xenografted directly to rat liver are differentiated into human hepatocytes without fusion,” Blood, vol. 106, no. 2, pp. 756–763, 2005. View at Publisher · View at Google Scholar · View at Scopus
  26. K. S. Choi, J.-S. Shin, J.-J. Lee, Y. S. Kim, S.-B. Kim, and C.-W. Kim, “In vitro trans-differentiation of rat mesenchymal cells into insulin-producing cells by rat pancreatic extract,” Biochemical and Biophysical Research Communications, vol. 330, no. 4, pp. 1299–1305, 2005. View at Publisher · View at Google Scholar · View at Scopus
  27. C. Toma, M. F. Pittenger, K. S. Cahill, B. J. Byrne, and P. D. Kessler, “Human mesenchymal stem cells differentiate to a cardiomyocyte phenotype in the adult murine heart,” Circulation, vol. 105, no. 1, pp. 93–98, 2002. View at Publisher · View at Google Scholar · View at Scopus
  28. T. Imasawa, Y. Utsunomiya, T. Kawamura et al., “The potential of bone marrow-derived cells to differentiate to glomerular mesangial cells,” Journal of the American Society of Nephrology, vol. 12, no. 7, pp. 1401–1409, 2001. View at Google Scholar · View at Scopus
  29. T. Yokoo, T. Ohashi, S. S. Jin et al., “Human mesenchymal stem cells in rodent whole-embryo culture are reprogrammed to contribute to kidney tissues,” Proceedings of the National Academy of Sciences of the United States of America, vol. 102, no. 9, pp. 3296–3300, 2005. View at Publisher · View at Google Scholar · View at Scopus
  30. D. A. De Ugarte, K. Morizono, A. Elbarbary et al., “Comparison of multi-lineage cells from human adipose tissue and bone marrow,” Cells Tissues Organs, vol. 174, no. 3, pp. 101–109, 2003. View at Publisher · View at Google Scholar · View at Scopus
  31. L. da Silva Meirelles, P. C. Chagastelles, and N. B. Nardi, “Mesenchymal stem cells reside in virtually all post-natal organs and tissues,” Journal of Cell Science, vol. 119, no. 11, pp. 2204–2213, 2006. View at Publisher · View at Google Scholar · View at Scopus
  32. S. Murphy and A. Atala, “Amniotic fluid and placental membranes: unexpected sources of highly multipotent cells,” Seminars in Reproductive Medicine, vol. 31, pp. 62–68, 2013. View at Publisher · View at Google Scholar · View at Scopus
  33. Y.-J. Chang, D. T.-B. Shih, C.-P. Tseng, T.-B. Hsieh, D.-C. Lee, and S.-M. Hwang, “Disparate mesenchyme-lineage tendencies in mesenchymal stem cells from human bone marrow and umbilical cord blood,” Stem Cells, vol. 24, no. 3, pp. 679–685, 2006. View at Publisher · View at Google Scholar · View at Scopus
  34. W. Tsuji, J. P. Rubin, and K. G. Marra, “Adipose-derived stem cells: implications in tissue regeneration,” World Journal of Stem Cells, vol. 6, no. 3, pp. 312–321, 2014. View at Publisher · View at Google Scholar
  35. T. P. Griffin, W. P. Martin, N. Islam, T. O’Brien, and M. D. Griffin, “The promise of mesenchymal stem cell therapy for diabetic kidney disease,” Current Diabetes Reports, vol. 16, no. 5, 2016. View at Publisher · View at Google Scholar
  36. R. Abdi, P. Fiorina, C. N. Adra, M. Atkinson, and M. H. Sayegh, “Immunomodulation by mesenchymal stem cells: a potential therapeutic strategy for type 1 diabetes,” Diabetes, vol. 57, no. 7, pp. 1759–1767, 2008. View at Publisher · View at Google Scholar · View at Scopus
  37. M. M. Duffy, T. Ritter, R. Ceredig, and M. D. Griffin, “Mesenchymal stem cell effects on T-cell effector pathways,” Stem Cell Research and Therapy, vol. 2, no. 4, article 34, 2011. View at Publisher · View at Google Scholar · View at Scopus
  38. K. English, “Mechanisms of mesenchymal stromal cell immunomodulation,” Immunology and Cell Biology, vol. 91, no. 1, pp. 19–26, 2013. View at Publisher · View at Google Scholar · View at Scopus
  39. M. Franquesa, M. J. Hoogduijn, O. Bestard, and J. M. Grinyó, “Immunomodulatory effect of mesenchymal stem cells on B cells,” Frontiers in Immunology, vol. 3, article 212, 2012. View at Publisher · View at Google Scholar · View at Scopus
  40. A. Ribeiro, P. Laranjeira, S. Mendes et al., “Mesenchymal stem cells from umbilical cord matrix, adipose tissue and bone marrow exhibit different capability to suppress peripheral blood B, natural killer and T cells,” Stem Cell Research and Therapy, vol. 4, no. 5, article 125, 2013. View at Publisher · View at Google Scholar · View at Scopus
  41. F. C. Brosius III, C. E. Alpers, E. P. Bottinger et al., “Mouse models of diabetic nephropathy,” Journal of the American Society of Nephrology, vol. 20, no. 12, pp. 2503–2512, 2009. View at Publisher · View at Google Scholar · View at Scopus
  42. M. E. Hyvönen, V. Dumont, J. Tienari et al., “Early-onset diabetic E1-DN mice develop albuminuria and glomerular injury typical of diabetic nephropathy,” BioMed Research International, vol. 2015, Article ID 102969, 11 pages, 2015. View at Publisher · View at Google Scholar · View at Scopus
  43. K. L. Hudkins, W. Pichaiwong, T. Wietecha et al., “BTBR Ob/Ob mutant mice model progressive diabetic nephropathy,” Journal of the American Society of Nephrology, vol. 21, no. 9, pp. 1533–1542, 2010. View at Publisher · View at Google Scholar · View at Scopus
  44. L. F. Fried, N. Emanuele, J. H. Zhang et al., “Combined angiotensin inhibition for the treatment of diabetic nephropathy,” New England Journal of Medicine, vol. 369, no. 20, pp. 1892–1903, 2013. View at Publisher · View at Google Scholar · View at Scopus
  45. R. H. Lee, M. J. Seo, R. L. Reger et al., “Multipotent stromal cells from human marrow home to and promote repair of pancreatic islets and renal glomeruli in diabetic NOD/scid mice,” Proceedings of the National Academy of Sciences of the United States of America, vol. 103, no. 46, pp. 17438–17443, 2006. View at Publisher · View at Google Scholar · View at Scopus
  46. F. E. Ezquer, M. E. Ezquer, D. B. Parrau, D. Carpio, A. J. Yañez, and P. A. Conget, “Systemic administration of multipotent mesenchymal stromal cells reverts hyperglycemia and prevents nephropathy in type 1 diabetic mice,” Biology of Blood and Marrow Transplantation, vol. 14, no. 6, pp. 631–640, 2008. View at Publisher · View at Google Scholar · View at Scopus
  47. F. Ezquer, M. Ezquer, V. Simon et al., “Endovenous administration of bone marrow-derived multipotent mesenchymal stromal cells prevents renal failure in diabetic mice,” Biology of Blood and Marrow Transplantation, vol. 15, no. 11, pp. 1354–1365, 2009. View at Publisher · View at Google Scholar · View at Scopus
  48. H. Zhou, H.-M. Tian, Y. Long et al., “Mesenchymal stem cells transplantation mildly ameliorates experimental diabetic nephropathy in rats,” Chinese Medical Journal, vol. 122, no. 21, pp. 2573–2579, 2009. View at Publisher · View at Google Scholar · View at Scopus
  49. Y. Fang, X. Tian, S. Bai et al., “Autologous transplantation of adipose-derived mesenchymal stem cells ameliorates streptozotocin-induced diabetic nephropathy in rats by inhibiting oxidative stress, pro-inflammatory cytokines and the p38 MAPK signaling pathway,” International Journal of Molecular Medicine, vol. 30, no. 1, pp. 85–92, 2012. View at Publisher · View at Google Scholar · View at Scopus
  50. J. H. Park, J. Park, S. H. Hwang, H. Han, and H. Ha, “Delayed treatment with human umbilical cord blood-derived stem cells attenuates diabetic renal injury,” Transplantation Proceedings, vol. 44, no. 4, pp. 1123–1126, 2012. View at Publisher · View at Google Scholar · View at Scopus
  51. J. H. Park, I. Hwang, S. H. Hwang, H. Han, and H. Ha, “Human umbilical cord blood-derived mesenchymal stem cells prevent diabetic renal injury through paracrine action,” Diabetes Research and Clinical Practice, vol. 98, no. 3, pp. 465–473, 2012. View at Publisher · View at Google Scholar · View at Scopus
  52. S. Wang, Y. Li, J. Zhao, J. Zhang, and Y. Huang, “Mesenchymal stem cells ameliorate podocyte injury and proteinuria in a type 1 diabetic nephropathy rat model,” Biology of Blood and Marrow Transplantation, vol. 19, no. 4, pp. 538–546, 2013. View at Publisher · View at Google Scholar · View at Scopus
  53. Y. Zhang, C. Ye, G. Wang et al., “Kidney-targeted transplantation of mesenchymal stem cells by ultrasound-targeted microbubble destruction promotes kidney repair in diabetic nephropathy rats,” BioMed Research International, vol. 2013, Article ID 526367, 13 pages, 2013. View at Publisher · View at Google Scholar · View at Scopus
  54. S.-S. Lv, G. Liu, J.-P. Wang et al., “Mesenchymal stem cells transplantation ameliorates glomerular injury in streptozotocin-induced diabetic nephropathy in rats via inhibiting macrophage infiltration,” International Immunopharmacology, vol. 17, no. 2, pp. 275–282, 2013. View at Publisher · View at Google Scholar · View at Scopus
  55. S. Lv, J. Cheng, A. Sun et al., “Mesenchymal stem cells transplantation ameliorates glomerular injury in streptozotocin-induced diabetic nephropathy in rats via inhibiting oxidative stress,” Diabetes Research and Clinical Practice, vol. 104, no. 1, pp. 143–154, 2014. View at Publisher · View at Google Scholar · View at Scopus
  56. M. T. Abdel Aziz, M. A. A. Wassef, H. H. Ahmed et al., “The role of bone marrow derived-mesenchymal stem cells in attenuation of kidney function in rats with diabetic nephropathy,” Diabetology and Metabolic Syndrome, vol. 6, article 34, 2014. View at Publisher · View at Google Scholar · View at Scopus
  57. S. Lv, G. Liu, A. Sun et al., “Mesenchymal stem cells ameliorate diabetic glomerular fibrosis in vivo and in vitro by inhibiting TGF-β signalling via secretion of bone morphogenetic protein 7,” Diabetes and Vascular Disease Research, vol. 11, no. 4, pp. 251–261, 2014. View at Publisher · View at Google Scholar · View at Scopus
  58. S. Wu, L. Li, G. Wang et al., “Ultrasound-targeted stromal cell-derived factor-1-loaded microbubble destruction promotes mesenchymal stem cell homing to kidneys in diabetic nephropathy rats,” International Journal of Nanomedicine, vol. 9, no. 1, pp. 5639–5651, 2014. View at Publisher · View at Google Scholar · View at Scopus
  59. F. Ezquer, M. Giraud-Billoud, D. Carpio, F. Cabezas, P. Conget, and M. Ezquer, “Proregenerative microenvironment triggered by donor mesenchymal stem cells preserves renal function and structure in mice with severe diabetes mellitus,” BioMed Research International, vol. 2015, Article ID 164703, 23 pages, 2015. View at Publisher · View at Google Scholar · View at Scopus
  60. H. Lang and C. Dai, “Effects of bone marrow mesenchymal stem cells on plasminogen activator inhibitor-1 and renal fibrosis in rats with diabetic nephropathy,” Archives of Medical Research, vol. 47, no. 2, pp. 71–77, 2016. View at Publisher · View at Google Scholar
  61. Y. Wang, J. He, X. Pei, and W. Zhao, “Systematic review and meta-Analysis of mesenchymal stem/stromal cells therapy for impaired renal function in small animal models,” Nephrology, vol. 18, no. 3, pp. 201–208, 2013. View at Publisher · View at Google Scholar · View at Scopus
  62. S. Schrepfer, T. Deuse, H. Reichenspurner, M. P. Fischbein, R. C. Robbins, and M. P. Pelletier, “Stem cell transplantation: the lung barrier,” Transplantation Proceedings, vol. 39, no. 2, pp. 573–576, 2007. View at Publisher · View at Google Scholar · View at Scopus
  63. U. M. Fischer, M. T. Harting, F. Jimenez et al., “Pulmonary passage is a major obstacle for intravenous stem cell delivery: The pulmonary first-pass effect,” Stem Cells and Development, vol. 18, no. 5, pp. 683–692, 2009. View at Publisher · View at Google Scholar · View at Scopus
  64. F. Tögel, J. Isaac, Z. Hu, K. Weiss, and C. Westenfelder, “Renal SDF-1 signals mobilization and homing of CXCR4-positive cells to the kidney after ischemic injury,” Kidney International, vol. 67, no. 5, pp. 1772–1784, 2005. View at Publisher · View at Google Scholar · View at Scopus
  65. B. Mazzinghi, E. Ronconi, E. Lazzeri et al., “Essential but differential role for CXCR4 and CXCR7 in the therapeutic homing of human renal progenitor cells,” Journal of Experimental Medicine, vol. 205, no. 2, pp. 479–490, 2008. View at Publisher · View at Google Scholar · View at Scopus
  66. L. Biancone, S. Bruno, M. C. Deregibus, C. Tetta, and G. Camussi, “Therapeutic potential of mesenchymal stem cell-derived microvesicles,” Nephrology Dialysis Transplantation, vol. 27, no. 8, pp. 3037–3042, 2012. View at Publisher · View at Google Scholar · View at Scopus
  67. C. Akyurekli, Y. Le, R. B. Richardson, D. Fergusson, J. Tay, and D. S. Allan, “A systematic review of preclinical studies on the therapeutic potential of mesenchymal stromal cell-derived microvesicles,” Stem Cell Reviews and Reports, vol. 11, no. 1, pp. 150–160, 2015. View at Publisher · View at Google Scholar · View at Scopus
  68. G. Zhang, D. Wang, S. Miao, X. Zou, G. Liu, and Y. Zhu, “Extracellular vesicles derived from mesenchymal stromal cells may possess increased therapeutic potential for acute kidney injury compared with conditioned medium in rodent models: a meta-analysis,” Experimental and Therapeutic Medicine, vol. 11, no. 4, pp. 1519–1525, 2016. View at Publisher · View at Google Scholar · View at Scopus
  69. A. van Koppen, J. A. Joles, B. W. M. van Balkom et al., “Human embryonic mesenchymal stem cell-derived conditioned medium rescues kidney function in rats with established chronic kidney disease,” PLOS ONE, vol. 7, no. 6, Article ID e38746, 2012. View at Publisher · View at Google Scholar · View at Scopus
  70. D. O. Freytes, J. W. Kang, I. Marcos-Campos, and G. Vunjak-Novakovic, “Macrophages modulate the viability and growth of human mesenchymal stem cells,” Journal of Cellular Biochemistry, vol. 114, no. 1, pp. 220–229, 2013. View at Publisher · View at Google Scholar · View at Scopus
  71. C.-Y. Wong, E.-L. Tan, and S.-K. Cheong, “In vitro differentiation of mesenchymal stem cells into mesangial cells when co-cultured with injured mesangial cells,” Cell Biology International, vol. 38, no. 4, pp. 497–501, 2014. View at Publisher · View at Google Scholar · View at Scopus
  72. A. M. Hoffman and S. W. Dow, “Concise review: stem cell trials using companion animal disease models,” Stem Cells, vol. 34, no. 7, pp. 1709–1729, 2016. View at Publisher · View at Google Scholar
  73. J. M. Quimby, T. L. Webb, L. M. Habenicht, and S. W. Dow, “Safety and efficacy of intravenous infusion of allogeneic cryopreserved mesenchymal stem cells for treatment of chronic kidney disease in cats: results of three sequential pilot studies,” Stem Cell Research and Therapy, vol. 4, no. 2, article no. 48, 2013. View at Publisher · View at Google Scholar · View at Scopus
  74. J. M. Quimby, T. L. Webb, E. Randall, A. Marolf, A. Valdes-Martinez, and S. W. Dow, “Assessment of intravenous adipose-derived allogeneic mesenchymal stem cells for the treatment of feline chronic kidney disease: a randomized, placebo-controlled clinical trial in eight cats,” Journal of Feline Medicine and Surgery, vol. 18, no. 2, pp. 165–171, 2016. View at Publisher · View at Google Scholar · View at Scopus
  75. M. Mendicino, A. M. Bailey, K. Wonnacott, R. K. Puri, and S. R. Bauer, “MSC-based product characterization for clinical trials: an FDA perspective,” Cell Stem Cell, vol. 14, no. 2, pp. 141–145, 2014. View at Publisher · View at Google Scholar · View at Scopus
  76. A. Trounson and C. McDonald, “Stem cell therapies in clinical trials: progress and challenges,” Cell Stem Cell, vol. 17, no. 1, pp. 11–22, 2015. View at Publisher · View at Google Scholar · View at Scopus
  77. X. Liu, P. Zheng, X. Wang et al., “A preliminary evaluation of efficacy and safety of Wharton's jelly mesenchymal stem cell transplantation in patients with type 2 diabetes mellitus,” Stem Cell Research and Therapy, vol. 5, article 57, 2014. View at Publisher · View at Google Scholar · View at Scopus
  78. C. Cramer, E. Freisinger, R. K. Jones et al., “Persistent high glucose concentrations alter the regenerative potential of mesenchymal stem cells,” Stem Cells and Development, vol. 19, no. 12, pp. 1875–1884, 2010. View at Publisher · View at Google Scholar · View at Scopus
  79. J. M. Hare, J. E. Fishman, G. Gerstenblith et al., “Comparison of allogeneic vs autologous bone marrow-derived mesenchymal stem cells delivered by transendocardial injection in patients with ischemic cardiomyopathy: The POSEIDON randomized trial,” JAMA, vol. 308, no. 22, pp. 2369–2379, 2012. View at Publisher · View at Google Scholar · View at Scopus
  80. J. Tolar, A. J. Nauta, M. J. Osborn et al., “Sarcoma derived from cultured mesenchymal stem cells,” Stem Cells, vol. 25, no. 2, pp. 371–379, 2007. View at Publisher · View at Google Scholar · View at Scopus
  81. J.-O. Jeong, J. W. Han, J.-M. Kim et al., “Malignant tumor formation after transplantation of short-term cultured bone marrow mesenchymal stem cells in experimental myocardial infarction and diabetic neuropathy,” Circulation Research, vol. 108, no. 11, pp. 1340–1347, 2011. View at Publisher · View at Google Scholar · View at Scopus
  82. F. Djouad, P. Plence, C. Bony et al., “Immunosuppressive effect of mesenchymal stem cells favors tumor growth in allogeneic animals,” Blood, vol. 102, no. 10, pp. 3837–3844, 2003. View at Publisher · View at Google Scholar · View at Scopus
  83. U. Kunter, S. Rong, P. Boor et al., “Mesenchymal stem cells prevent progressive experimental renal failure but maldifferentiate into glomerular adipocytes,” Journal of the American Society of Nephrology, vol. 18, no. 6, pp. 1754–1764, 2007. View at Publisher · View at Google Scholar · View at Scopus
  84. T. H. Hostetter, “Prevention of end-stage renal disease due to type 2 diabetes,” New England Journal of Medicine, vol. 345, no. 12, pp. 910–912, 2001. View at Publisher · View at Google Scholar · View at Scopus
  85. M. E. Williams and K. R. Tuttle, “The next generation of diabetic nephropathy therapies: an update,” Advances in Chronic Kidney Disease, vol. 12, no. 2, pp. 212–222, 2005. View at Publisher · View at Google Scholar · View at Scopus
  86. H.-H. Parving, B. M. Brenner, J. J. V. McMurray et al., “Cardiorenal end points in a trial of aliskiren for type 2 diabetes,” New England Journal of Medicine, vol. 367, no. 23, pp. 2204–2213, 2012. View at Publisher · View at Google Scholar · View at Scopus
  87. C. J. Bailey, “Renal glucose reabsorption inhibitors to treat diabetes,” Trends in Pharmacological Sciences, vol. 32, no. 2, pp. 63–71, 2011. View at Publisher · View at Google Scholar · View at Scopus
  88. M. A. Nauck, “Update on developments with SGLT2 inhibitors in the management of type 2 diabetes,” Drug Design, Development and Therapy, vol. 8, pp. 1335–1380, 2014. View at Publisher · View at Google Scholar · View at Scopus
  89. M. J. Levine, “Empagliflozin for type 2 diabetes mellitus: an overview of phase 3 clinical trials,” Current Diabetes Reviews, vol. 12, no. 4, 2016. View at Publisher · View at Google Scholar
  90. B. Zinman, C. Wanner, J. M. Lachin et al., “Empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes,” New England Journal of Medicine, vol. 373, pp. 2117–2128, 2015. View at Publisher · View at Google Scholar · View at Scopus
  91. C. Wanner, S. E. Inzucchi, J. M. Lachin et al., “Empagliflozin and progression of kidney disease in type 2 diabetes,” The New England Journal of Medicine, vol. 375, pp. 1799–1802, 2016. View at Publisher · View at Google Scholar
  92. F. Gembardt, C. Bartaun, N. Jarzebska et al., “The SGLT2 inhibitor empagliflozin ameliorates early features of diabetic nephropathy in BTBR ob/ob type 2 diabetic mice with and without hypertension,” American Journal of Physiology—Renal Physiology, vol. 307, no. 3, pp. F317–F325, 2014. View at Publisher · View at Google Scholar · View at Scopus
  93. L. A. Gallo, M. S. Ward, A. K. Fotheringham et al., “Once daily administration of the SGLT2 inhibitor, empagliflozin, attenuates markers of renal fibrosis without improving albuminuria in diabetic db/db mice,” Scientific Reports, vol. 6, Article ID 26428, 2016. View at Publisher · View at Google Scholar
  94. K. Kanasaki, S. Shi, M. Kanasaki et al., “Linagliptin-mediated DPP-4 inhibition ameliorates kidney fibrosis in streptozotocin-induced diabetic mice by inhibiting endothelial-to-mesenchymal transition in a therapeutic regimen,” Diabetes, vol. 63, no. 6, pp. 2120–2131, 2014. View at Publisher · View at Google Scholar · View at Scopus
  95. S.-J. Zhou, L. Bai, L. Lv et al., “Liraglutide ameliorates renal injury in streptozotocin-induced diabetic rats by activating endothelial nitric oxide synthase activity via the downregulation of the nuclear factor-κB pathway,” Molecular Medicine Reports, vol. 10, no. 5, pp. 2587–2594, 2014. View at Publisher · View at Google Scholar · View at Scopus
  96. E. Jung, J. Kim, S. Ho Kim, S. Kim, and M.-H. Cho, “Gemigliptin improves renal function and attenuates podocyte injury in mice with diabetic nephropathy,” European Journal of Pharmacology, vol. 761, pp. 116–124, 2015. View at Publisher · View at Google Scholar · View at Scopus
  97. B. Hartleben, M. Gödel, C. Meyer-Schwesinger et al., “Autophagy influences glomerular disease susceptibility and maintains podocyte homeostasis in aging mice,” Journal of Clinical Investigation, vol. 120, no. 4, pp. 1084–1096, 2010. View at Publisher · View at Google Scholar · View at Scopus
  98. M. Gödel, B. Hartleben, N. Herbach et al., “Role of mTOR in podocyte function and diabetic nephropathy in humans and mice,” Journal of Clinical Investigation, vol. 121, no. 6, pp. 2197–2209, 2011. View at Publisher · View at Google Scholar · View at Scopus
  99. Y. Yang, J. Wang, L. Qin et al., “Rapamycin prevents early steps of the development of diabetic nephropathy in rats,” American Journal of Nephrology, vol. 27, no. 5, pp. 495–502, 2007. View at Publisher · View at Google Scholar · View at Scopus
  100. K. Inoki, H. Mori, J. Wang et al., “mTORC1 activation in podocytes is a critical step in the development of diabetic nephropathy in mice,” Journal of Clinical Investigation, vol. 121, no. 6, pp. 2181–2196, 2011. View at Publisher · View at Google Scholar · View at Scopus
  101. S. D. Udayappan, A. V. Hartstra, G. M. Dallinga-Thie, and M. Nieuwdorp, “Intestinal microbiota and faecal transplantation as treatment modality for insulin resistance and type 2 diabetes mellitus,” Clinical and Experimental Immunology, vol. 177, no. 1, pp. 24–29, 2014. View at Publisher · View at Google Scholar · View at Scopus
  102. J. Qin, Y. Li, Z. Cai et al., “A metagenome-wide association study of gut microbiota in type 2 diabetes,” Nature, vol. 490, no. 7418, pp. 55–60, 2012. View at Publisher · View at Google Scholar · View at Scopus
  103. F. H. Karlsson, V. Tremaroli, I. Nookaew et al., “Gut metagenome in European women with normal, impaired and diabetic glucose control,” Nature, vol. 498, no. 7452, pp. 99–103, 2013. View at Publisher · View at Google Scholar · View at Scopus
  104. A. Everard, C. Belzer, L. Geurts et al., “Cross-talk between Akkermansia muciniphila and intestinal epithelium controls diet-induced obesity,” Proceedings of the National Academy of Sciences of the United States of America, vol. 110, no. 22, pp. 9066–9071, 2013. View at Publisher · View at Google Scholar · View at Scopus
  105. P. D. Cani, E. Lecourt, E. M. Dewulf et al., “Gut microbiota fermentation of prebiotics increases satietogenic and incretin gut peptide production with consequences for appetite sensation and glucose response after a meal,” American Journal of Clinical Nutrition, vol. 90, no. 5, pp. 1236–1243, 2009. View at Publisher · View at Google Scholar · View at Scopus
  106. H. Yadav, S. Jain, and P. R. Sinha, “Antidiabetic effect of probiotic dahi containing Lactobacillus acidophilus and Lactobacillus casei in high fructose fed rats,” Nutrition, vol. 23, no. 1, pp. 62–68, 2007. View at Publisher · View at Google Scholar · View at Scopus
  107. H. S. Ejtahed, J. Mohtadi-Nia, A. Homayouni-Rad et al., “Effect of probiotic yogurt containing Lactobacillus acidophilus and Bifidobacterium lactis on lipid profile in individuals with type 2 diabetes mellitus,” Journal of Dairy Science, vol. 94, no. 7, pp. 3288–3294, 2011. View at Publisher · View at Google Scholar · View at Scopus
  108. E. van Nood, M. G. W. Dijkgraaf, and J. J. Keller, “Duodenal infusion of feces for recurrent Clostridium difficile,” The New England journal of medicine, vol. 368, no. 22, p. 2145, 2013. View at Publisher · View at Google Scholar · View at Scopus
  109. A. Vrieze, E. Van Nood, F. Holleman et al., “Transfer of intestinal microbiota from lean donors increases insulin sensitivity in individuals with metabolic syndrome,” Gastroenterology, vol. 143, no. 4, pp. 913–916.e7, 2012. View at Publisher · View at Google Scholar
  110. V. K. Ridaura, J. J. Faith, F. E. Rey et al., “Gut microbiota from twins discordant for obesity modulate metabolism in mice,” Science, vol. 341, no. 6150, Article ID 1241214, 2013. View at Publisher · View at Google Scholar · View at Scopus
  111. E. Suzuki, D. Fujita, M. Takahashi et al., “Adult stem cells as a tool for kidney regeneration,” World Journal of Nephrology, vol. 5, no. 1, pp. 43–52, 2016. View at Publisher · View at Google Scholar
  112. C. Tang, P. J. Russell, R. Martiniello-Wilks, J. E. J. Rasko, and A. Khatri, “Concise review: nanoparticles and cellular carriers-allies in cancer imaging and cellular gene therapy?” STEM CELLS, vol. 28, no. 9, pp. 1686–1702, 2010. View at Publisher · View at Google Scholar · View at Scopus
  113. N. J. Serkova, B. Renner, B. A. Larsen et al., “Renal inflammation: targeted iron oxide nanoparticles for molecular MR imaging in mice,” Radiology, vol. 255, no. 2, pp. 517–526, 2010. View at Publisher · View at Google Scholar · View at Scopus
  114. F. M. Kievit and M. Zhang, “Surface engineering of iron oxide nanoparticles for targeted cancer therapy,” Accounts of Chemical Research, vol. 44, no. 10, pp. 853–862, 2011. View at Publisher · View at Google Scholar · View at Scopus
  115. I. Pujalté, I. Passagne, B. Brouillaud et al., “Cytotoxicity and oxidative stress induced by different metallic nanoparticles on human kidney cells,” Particle and Fibre Toxicology, vol. 8, article 10, 2011. View at Publisher · View at Google Scholar · View at Scopus
  116. I. Iavicoli, L. Fontana, and G. Nordberg, “The effects of nanoparticles on the renal system,” Critical Reviews in Toxicology, vol. 46, no. 6, pp. 490–560, 2016. View at Publisher · View at Google Scholar
  117. C. H. Choi, J. E. Zuckerman, P. Webster, and M. E. Davis, “Targeting kidney mesangium by nanoparticles of defined size,” Proceedings of the National Academy of Sciences of the United States, vol. 108, no. 16, pp. 6656–6661, 2011. View at Publisher · View at Google Scholar
  118. J. S. Duffield, K. M. Park, L.-L. Hsiao et al., “Restoration of tubular epithelial cells during repair of the postischemic kidney occurs independently of bone marrow-derived stem cells,” Journal of Clinical Investigation, vol. 115, no. 7, pp. 1743–1755, 2005. View at Publisher · View at Google Scholar · View at Scopus
  119. P. W. Tetteh, H. F. Farin, and H. Clevers, “Plasticity within stem cell hierarchies in mammalian epithelia,” Trends in Cell Biology, vol. 25, no. 2, pp. 100–108, 2015. View at Publisher · View at Google Scholar · View at Scopus
  120. E. Ronconi, C. Sagrinati, M. L. Angelotti et al., “Regeneration of glomerular podocytes by human renal progenitors,” Journal of the American Society of Nephrology, vol. 20, no. 2, pp. 322–332, 2009. View at Publisher · View at Google Scholar · View at Scopus
  121. D. Appel, D. B. Kershaw, B. Smeets et al., “Recruitment of podocytes from glomerular parietal epithelial cells,” Journal of the American Society of Nephrology, vol. 20, no. 2, pp. 333–343, 2009. View at Publisher · View at Google Scholar · View at Scopus
  122. K. Berger, K. Schulte, P. Boor et al., “The regenerative potential of parietal epithelial cells in adult mice,” Journal of the American Society of Nephrology, vol. 25, no. 4, pp. 693–705, 2014. View at Publisher · View at Google Scholar · View at Scopus
  123. L. Lasagni, M. L. Angelotti, E. Ronconi et al., “Podocyte Regeneration driven by renal progenitors determines glomerular disease remission and can be pharmacologically enhanced,” Stem Cell Reports, vol. 5, no. 2, pp. 248–263, 2015. View at Publisher · View at Google Scholar · View at Scopus
  124. B. Smeets, M. L. Angelotti, P. Rizzo et al., “Renal progenitor cells contribute to hyperplastic lesions of podocytopathies and crescentic glomerulonephritis,” Journal of the American Society of Nephrology, vol. 20, no. 12, pp. 2593–2603, 2009. View at Publisher · View at Google Scholar · View at Scopus
  125. W. Pichaiwong, K. L. Hudkins, T. Wietecha et al., “Reversibility of structural and functional damage in a model of advanced diabetic nephropathy,” Journal of the American Society of Nephrology, vol. 24, no. 7, pp. 1088–1102, 2013. View at Publisher · View at Google Scholar · View at Scopus
  126. I. Kan, Y. Barhum, E. Melamed, and D. Offen, “Mesenchymal stem cells stimulate endogenous neurogenesis in the subventricular zone of adult mice,” Stem Cell Reviews and Reports, vol. 7, no. 2, pp. 404–412, 2011. View at Publisher · View at Google Scholar · View at Scopus
  127. F. S. Loffredo, M. L. Steinhauser, J. Gannon, and R. T. Lee, “Bone marrow-derived cell therapy stimulates endogenous cardiomyocyte progenitors and promotes cardiac repair,” Cell Stem Cell, vol. 8, no. 4, pp. 389–398, 2011. View at Publisher · View at Google Scholar
  128. B. Bussolati and G. Camussi, “Therapeutic use of human renal progenitor cells for kidney regeneration,” Nature Reviews Nephrology, vol. 11, no. 12, pp. 695–706, 2015. View at Publisher · View at Google Scholar · View at Scopus
  129. E. B. Rangel, S. A. Gomes, R. A. Dulce et al., “C-kit+ cells isolated from developing kidneys are a novel population of stem cells with regenerative potential,” Stem Cells, vol. 31, no. 8, pp. 1644–1656, 2013. View at Publisher · View at Google Scholar · View at Scopus
  130. R. Kang, Y. Zhou, S. Tan et al., “Mesenchymal stem cells derived from human induced pluripotent stem cells retain adequate osteogenicity and chondrogenicity but less adipogenicity,” Stem Cell Research and Therapy, vol. 6, no. 1, article 144, 2015. View at Publisher · View at Google Scholar · View at Scopus
  131. Q. Lian, Y. Zhang, J. Zhang et al., “Functional mesenchymal stem cells derived from human induced pluripotent stem cells attenuate limb ischemia in mice,” Circulation, vol. 121, no. 9, pp. 1113–1123, 2010. View at Publisher · View at Google Scholar · View at Scopus
  132. T. Himeno, H. Kamiya, K. Naruse et al., “Mesenchymal stem cell-like cells derived from mouse induced pluripotent stem cells ameliorate diabetic polyneuropathy in mice,” BioMed Research International, vol. 2013, Article ID 259187, 12 pages, 2013. View at Publisher · View at Google Scholar · View at Scopus