Table of Contents Author Guidelines Submit a Manuscript
Stem Cells International
Volume 2017, Article ID 1025820, 16 pages
https://doi.org/10.1155/2017/1025820
Research Article

Transcriptome Profiling of IL-17A Preactivated Mesenchymal Stem Cells: A Comparative Study to Unmodified and IFN-γ Modified Mesenchymal Stem Cells

1School of Medicine, Faculty of Health Sciences, University of Adelaide, Adelaide, SA, Australia
2Centre for Clinical and Experimental Transplantation, Royal Adelaide Hospital, Adelaide, SA, Australia
3Transplantation Immunology Group, Garvan Institute of Medical Research, Sydney, NSW, Australia
4South Australian Health and Medical Research Institute, Adelaide, SA, Australia
5Mesenchymal Stem Cell Laboratory, School of Medicine, Faculty of Health Sciences, University of Adelaide, Adelaide, SA, Australia
6Central Northern Adelaide Renal Transplantation Service, Royal Adelaide Hospital, Adelaide, SA, Australia

Correspondence should be addressed to Kisha Nandini Sivanathan; ua.ude.edialeda@nahtanavis.ahsik

Received 21 September 2016; Accepted 20 December 2016; Published 15 February 2017

Academic Editor: Thomas Ichim

Copyright © 2017 Kisha Nandini Sivanathan et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. K. N. Sivanathan, D. M. Rojas-Canales, C. M. Hope et al., “Interleukin-17A-induced human mesenchymal stem cells are superior modulators of immunological function,” Stem Cells, vol. 33, no. 9, pp. 2850–2863, 2015. View at Publisher · View at Google Scholar · View at Scopus
  2. S. Ivanov and A. Lindén, “Interleukin-17 as a drug target in human disease,” Trends in Pharmacological Sciences, vol. 30, no. 2, pp. 95–103, 2009. View at Publisher · View at Google Scholar · View at Scopus
  3. Y. Iwakura, H. Ishigame, S. Saijo, and S. Nakae, “Functional specialization of interleukin-17 family members,” Immunity, vol. 34, no. 2, pp. 149–162, 2011. View at Publisher · View at Google Scholar · View at Scopus
  4. X. Song and Y. Qian, “The activation and regulation of IL-17 receptor mediated signaling,” Cytokine, vol. 62, no. 2, pp. 175–182, 2013. View at Publisher · View at Google Scholar · View at Scopus
  5. H. C. Seon, H. Park, and C. Dong, “Act1 adaptor protein is an immediate and essential signaling component of interleukin-17 receptor,” Journal of Biological Chemistry, vol. 281, no. 47, pp. 35603–35607, 2006. View at Publisher · View at Google Scholar · View at Scopus
  6. W. Huang, V. La Russa, A. Alzoubi, and P. Schwarzenberger, “Interleukin-17A: a T-cell-derived growth factor for murine and human mesenchymal stem cells,” Stem Cells, vol. 24, no. 6, pp. 1512–1518, 2006. View at Publisher · View at Google Scholar · View at Scopus
  7. H. Huang, H. J. Kim, E.-J. Chang et al., “IL-17 stimulates the proliferation and differentiation of human mesenchymal stem cells: implications for bone remodeling,” Cell Death and Differentiation, vol. 16, no. 10, pp. 1332–1343, 2009. View at Publisher · View at Google Scholar · View at Scopus
  8. S. Mojsilović, A. Krstić, V. Ilić et al., “IL-17 and FGF signaling involved in mouse mesenchymal stem cell proliferation,” Cell and Tissue Research, vol. 346, no. 3, pp. 305–316, 2011. View at Publisher · View at Google Scholar
  9. K. Schroder, P. J. Hertzog, T. Ravasi, and D. A. Hume, “Interferon-γ: an overview of signals, mechanisms and functions,” Journal of Leukocyte Biology, vol. 75, no. 2, pp. 163–189, 2004. View at Publisher · View at Google Scholar · View at Scopus
  10. L. C. Platanias, “Mechanisms of type-I- and type-II-interferon-mediated signalling,” Nature Reviews Immunology, vol. 5, no. 5, pp. 375–386, 2005. View at Publisher · View at Google Scholar · View at Scopus
  11. H. A. Young and K. J. Hardy, “Role of interferon-gamma in immune cell regulation,” Journal of Leukocyte Biology, vol. 58, no. 4, pp. 373–381, 1995. View at Google Scholar
  12. S. D. Der, A. Zhou, B. R. G. Williams, and R. H. Silverman, “Identification of genes differentially regulated by interferon α, β, or γ using oligonucleotide arrays,” Proceedings of the National Academy of Sciences of the United States of America, vol. 95, no. 26, pp. 15623–15628, 1998. View at Publisher · View at Google Scholar · View at Scopus
  13. J. L. Pace, S. W. Russell, B. A. Torres, H. M. Johnson, and P. W. Gray, “Recombinant mouse γ interferon induces the priming step in macrophage activation for tumor cell killing,” Journal of Immunology, vol. 130, no. 5, pp. 2011–2013, 1983. View at Google Scholar · View at Scopus
  14. C. F. Nathan, H. W. Murray, M. E. Wiebe, and B. Y. Rubin, “Identification of interferon-γ as the lymphokine that activates human macrophage oxidative metabolism and antimicrobial activity,” Journal of Experimental Medicine, vol. 158, no. 3, pp. 670–689, 1983. View at Publisher · View at Google Scholar · View at Scopus
  15. T. Y. Basham and T. C. Merigan, “Recombinant interferon-γ increases HLA-DR synthesis and expression,” Journal of Immunology, vol. 130, no. 4, pp. 1492–1494, 1983. View at Google Scholar · View at Scopus
  16. U. Boehm, T. Klamp, M. Groot, and J. C. Howard, “Cellular responses to interferon-γ,” Annual Review of Immunology, vol. 15, pp. 749–795, 1997. View at Publisher · View at Google Scholar · View at Scopus
  17. T. D. Geppert and P. E. Lipsky, “Antigen presentation by interferon-γ-treated endothelial cells and fibroblasts: differential ability to function as antigen-presenting cells despite comparable Ia expression,” Journal of Immunology, vol. 135, no. 6, pp. 3750–3762, 1985. View at Google Scholar · View at Scopus
  18. F. D. Finkelman, I. M. Katona, T. R. Mosmann, and R. L. Coffman, “IFN-γ regulates the isotypes of Ig secreted during in vivo humoral immune responses,” The Journal of Immunology, vol. 140, no. 4, pp. 1022–1027, 1988. View at Google Scholar · View at Scopus
  19. A. O'Garra, “Cytokines induce the development of functionally heterogeneous T helper cell subsets,” Immunity, vol. 8, no. 3, pp. 275–283, 1998. View at Publisher · View at Google Scholar · View at Scopus
  20. A. Le Moine, M. Goldman, and D. Abramowicz, “Multiple pathways to allograft rejection,” Transplantation, vol. 73, no. 9, pp. 1373–1381, 2002. View at Publisher · View at Google Scholar · View at Scopus
  21. K. N. Sivanathan, S. Gronthos, D. Rojas-Canales, B. Thierry, and P. T. Coates, “Interferon-gamma modification of mesenchymal stem cells: implications of autologous and allogeneic mesenchymal stem cell therapy in allotransplantation,” Stem Cell Reviews and Reports, vol. 10, no. 3, pp. 351–375, 2014. View at Publisher · View at Google Scholar · View at Scopus
  22. S. Gronthos, S. E. Graves, S. Ohta, and P. J. Simmons, “The STRO-1+ fraction of adult human bone marrow contains the osteogenic precursors,” Blood, vol. 84, no. 12, pp. 4164–4173, 1994. View at Google Scholar · View at Scopus
  23. P. J. Simmons, S. Gronthos, A. Zannettino, S. Ohta, and S. Graves, “Isolation, characterization and functional activity of human marrow stromal progenitors in hemopoiesis,” Progress in Clinical and Biological Research, vol. 389, pp. 271–280, 1994. View at Google Scholar · View at Scopus
  24. D. W. Huang, B. T. Sherman, and R. A. Lempicki, “Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources,” Nature Protocols, vol. 4, no. 1, pp. 44–57, 2009. View at Publisher · View at Google Scholar · View at Scopus
  25. P. Y. Muller, H. Janovjak, A. R. Miserez, and Z. Dobbie, “Processing of gene expression data generated by quantitative real-time RT-PCR,” BioTechniques, vol. 32, no. 6, pp. 1372–1379, 2002. View at Google Scholar · View at Scopus
  26. F. Wold, “In vivo chemical modification of proteins (post-translational modification),” Annual Review of Biochemistry, vol. 50, pp. 783–814, 1981. View at Publisher · View at Google Scholar · View at Scopus
  27. C. T. Walsh, S. Garneau-Tsodikova, and G. J. Gatto Jr., “Protein posttranslational modifications: the chemistry of proteome diversifications,” Angewandte Chemie—International Edition, vol. 44, no. 45, pp. 7342–7372, 2005. View at Publisher · View at Google Scholar · View at Scopus
  28. R. Meisel, A. Zibert, M. Laryea, U. Göbel, W. Däubener, and D. Dilloo, “Human bone marrow stromal cells inhibit allogeneic T-cell responses by indoleamine 2,3-dioxygenase-mediated tryptophan degradation,” Blood, vol. 103, no. 12, pp. 4619–4621, 2004. View at Publisher · View at Google Scholar · View at Scopus
  29. W. Ge, J. Jiang, J. Arp, W. Liu, B. Garcia, and H. Wang, “Regulatory T-cell generation and kidney allograft tolerance induced by mesenchymal stem cells associated with indoleamine 2,3-dioxygenase expression,” Transplantation, vol. 90, no. 12, pp. 1312–1320, 2010. View at Publisher · View at Google Scholar · View at Scopus
  30. N. Wada, P. M. Bartold, and S. Gronthos, “Human foreskin fibroblasts exert immunomodulatory properties by a different mechanism to bone marrow stromal/stem cells,” Stem Cells and Development, vol. 20, no. 4, pp. 647–659, 2011. View at Publisher · View at Google Scholar · View at Scopus
  31. M. François, R. Romieu-Mourez, M. Li, and J. Galipeau, “Human MSC suppression correlates with cytokine induction of indoleamine 2,3-dioxygenase and bystander M2 macrophage differentiation,” Molecular Therapy, vol. 20, no. 1, pp. 187–195, 2012. View at Publisher · View at Google Scholar · View at Scopus
  32. X.-X. He, H. Bai, G.-R. Yang, Y.-J. Xue, and Y.-N. Su, “Expression of Toll-like receptors in human bone marrow mesenchymal stem cells,” Journal of Experimental Hematology, vol. 17, no. 3, pp. 695–699, 2009. View at Google Scholar · View at Scopus
  33. C. A. Opitz, U. M. Litzenburger, C. Lutz et al., “Toll-like receptor engagement enhances the immunosuppressive properties of human bone marrow-derived mesenchymal stem cells by inducing indoleamine-2,3-dioxygenase-1 via Interferon-β and protein kinase R,” Stem Cells, vol. 27, no. 4, pp. 909–919, 2009. View at Publisher · View at Google Scholar · View at Scopus
  34. M. Mastri, Z. Shah, T. McLaughlin et al., “Activation of toll-like receptor 3 amplifies mesenchymal stem cell trophic factors and enhances therapeutic potency,” American Journal of Physiology—Cell Physiology, vol. 303, no. 10, pp. C1021–C1033, 2012. View at Publisher · View at Google Scholar · View at Scopus
  35. D. J. Kota, B. Dicarlo, R. A. Hetz, P. Smith, C. S. Cox Jr., and S. D. Olson, “Differential MSC activation leads to distinct mononuclear leukocyte binding mechanisms,” Scientific Reports, vol. 4, article no. 4565, 2014. View at Publisher · View at Google Scholar · View at Scopus
  36. D. K. Sung, Y. S. Chang, S. I. Sung, H. S. Yoo, S. Y. Ahn, and W. S. Park, “Antibacterial effect of mesenchymal stem cells against Escherichia coli is mediated by secretion of beta- defensin- 2 via toll- like receptor 4 signalling,” Cellular Microbiology, vol. 18, no. 3, pp. 424–436, 2016. View at Publisher · View at Google Scholar · View at Scopus
  37. F. Djouad, L.-M. Charbonnier, C. Bouffi et al., “Mesenchymal stem cells inhibit the differentiation of dendritic cells through an interleukin-6-dependent mechanism,” Stem Cells, vol. 25, no. 8, pp. 2025–2032, 2007. View at Publisher · View at Google Scholar · View at Scopus
  38. H.-Y. Lai, M.-J. Yang, K.-C. Wen, K.-C. Chao, C.-C. Shih, and O. K. Lee, “Mesenchymal stem cells negatively regulate dendritic lineage commitment of umbilical-cord-blood-derived hematopoietic stem cells: an unappreciated mechanism as immunomodulators,” Tissue Engineering—Part A, vol. 16, no. 9, pp. 2987–2997, 2010. View at Publisher · View at Google Scholar · View at Scopus
  39. G. Raicevic, M. Najar, B. Stamatopoulos et al., “The source of human mesenchymal stromal cells influences their TLR profile as well as their functional properties,” Cellular Immunology, vol. 270, no. 2, pp. 207–216, 2011. View at Publisher · View at Google Scholar · View at Scopus
  40. J. Lei, Z. Wang, D. Hui et al., “Ligation of TLR2 and TLR4 on murine bonTritschler I.e marrow-derived mesenchymal stem cells triggers differential effects on their immunosuppressive activity,” Cellular Immunology, vol. 271, no. 1, pp. 147–156, 2011. View at Publisher · View at Google Scholar · View at Scopus
  41. G. Ren, L. Zhang, X. Zhao et al., “Mesenchymal stem cell-mediated immunosuppression occurs via concerted action of chemokines and nitric oxide,” Cell Stem Cell, vol. 2, no. 2, pp. 141–150, 2008. View at Publisher · View at Google Scholar · View at Scopus
  42. Y. Shi, G. Hu, J. Su et al., “Mesenchymal stem cells: a new strategy for immunosuppression and tissue repair,” Cell Research, vol. 20, no. 5, pp. 510–518, 2010. View at Publisher · View at Google Scholar · View at Scopus
  43. M. Duijvestein, M. E. Wildenberg, M. M. Welling et al., “Pretreatment with interferon-γ enhances the therapeutic activity of mesenchymal stromal cells in animal models of colitis,” Stem Cells, vol. 29, no. 10, pp. 1549–1558, 2011. View at Publisher · View at Google Scholar · View at Scopus
  44. A. T. Badillo, K. J. Beggs, E. H. Javazon, J. C. Tebbets, and A. W. Flake, “Murine bone marrow stromal progenitor cells elicit an in vivo cellular and humoral alloimmune response,” Biology of Blood and Marrow Transplantation, vol. 13, no. 4, pp. 412–422, 2007. View at Publisher · View at Google Scholar · View at Scopus
  45. M. Rafei, E. Birman, K. Forner, and J. Galipeau, “Allogeneic mesenchymal stem cells for treatment of experimental autoimmune encephalomyelitis,” Molecular Therapy, vol. 17, no. 10, pp. 1799–1803, 2009. View at Publisher · View at Google Scholar · View at Scopus
  46. S. Schu, M. Nosov, L. O'Flynn et al., “Immunogenicity of allogeneic mesenchymal stem cells,” Journal of Cellular and Molecular Medicine, vol. 16, no. 9, pp. 2094–2103, 2012. View at Publisher · View at Google Scholar · View at Scopus
  47. P. J. Lehner and P. Cresswell, “Processing and delivery of peptides presented by MHC class I molecules,” Current Opinion in Immunology, vol. 8, no. 1, pp. 59–67, 1996. View at Publisher · View at Google Scholar · View at Scopus
  48. I. A. York, A. L. Goldberg, X. Y. Mo, and K. L. Rock, “Proteolysis and class I major histocompatibility complex antigen presentation,” Immunological Reviews, vol. 172, pp. 49–66, 1999. View at Publisher · View at Google Scholar · View at Scopus
  49. J. Koch, R. Guntrum, S. Heintke, C. Kyritsis, and R. Tampé, “Functional dissection of the transmembrane domains of the transporter associated with antigen processing (TAP),” Journal of Biological Chemistry, vol. 279, no. 11, pp. 10142–10147, 2004. View at Publisher · View at Google Scholar · View at Scopus
  50. K. L. Rock, I. A. York, and A. L. Goldberg, “Post-proteasomal antigen processing for major histocompatibility complex class I presentation,” Nature Immunology, vol. 5, no. 7, pp. 670–677, 2004. View at Publisher · View at Google Scholar · View at Scopus
  51. J. Neefjes, M. L. M. Jongsma, P. Paul, and O. Bakke, “Towards a systems understanding of MHC class I and MHC class II antigen presentation,” Nature Reviews Immunology, vol. 11, no. 12, pp. 823–836, 2011. View at Publisher · View at Google Scholar · View at Scopus
  52. S. J. Turley, K. Inaba, W. S. Garrett et al., “Transport of peptide-MHC class II complexes in developing dendritic cells,” Science, vol. 288, no. 5465, pp. 522–527, 2000. View at Publisher · View at Google Scholar · View at Scopus
  53. L. Zangi, R. Margalit, S. Reich-Zeliger et al., “Direct imaging of immune rejection and memory induction by allogeneic mesenchymal stromal cells,” Stem Cells, vol. 27, no. 11, pp. 2865–2874, 2009. View at Publisher · View at Google Scholar · View at Scopus
  54. J. A. Potian, H. Aviv, N. M. Ponzio, J. S. Harrison, and P. Rameshwar, “Veto-like activity of mesenchymal stem cells: functional discrimination between cellular responses to alloantigens and recall antigens,” Journal of Immunology, vol. 171, no. 7, pp. 3426–3434, 2003. View at Publisher · View at Google Scholar · View at Scopus
  55. M. Krampera, S. Glennie, J. Dyson et al., “Bone marrow mesenchymal stem cells inhibit the response of naive and memory antigen-specific T cells to their cognate peptide,” Blood, vol. 101, no. 9, pp. 3722–3729, 2003. View at Publisher · View at Google Scholar · View at Scopus
  56. P. Batten, P. Sarathchandra, J. W. Antoniw et al., “Human mesenchymal stem cells induce T cell anergy and downregulate T cell allo-responses via the TH2 pathway: relevance to tissue engineering human heart valves,” Tissue Engineering, vol. 12, no. 8, pp. 2263–2273, 2006. View at Publisher · View at Google Scholar · View at Scopus
  57. S. J. Prasanna, D. Gopalakrishnan, S. R. Shankar, and A. B. Vasandan, “Pro-inflammatory cytokines, IFNγ and TNFα, influence immune properties of human bone marrow and Wharton jelly mesenchymal stem cells differentially,” PLoS ONE, vol. 5, no. 2, Article ID e9016, 2010. View at Publisher · View at Google Scholar · View at Scopus
  58. S. Aggarwal and M. F. Pittenger, “Human mesenchymal stem cells modulate allogeneic immune cell responses,” Blood, vol. 105, no. 4, pp. 1815–1822, 2005. View at Publisher · View at Google Scholar · View at Scopus
  59. M. D. Griffin, A. E. Ryan, S. Alagesan, P. Lohan, O. Treacy, and T. Ritter, “Anti-donor immune responses elicited by allogeneic mesenchymal stem cells: what have we learned so far,” Immunology and Cell Biology, vol. 91, no. 1, pp. 40–51, 2013. View at Publisher · View at Google Scholar · View at Scopus
  60. C. Ries, V. Egea, M. Karow, H. Kolb, M. Jochum, and P. Neth, “MMP-2, MT1-MMP, and TIMP-2 are essential for the invasive capacity of human mesenchymal stem cells: differential regulation by inflammatory cytokines,” Blood, vol. 109, no. 9, pp. 4055–4063, 2007. View at Publisher · View at Google Scholar · View at Scopus
  61. A. De Becker, P. Van Hummelen, M. Bakkus et al., “Migration of culture-expanded human mesenchymal stem cells through bone marrow endothelium is regulated by matrix metalloproteinase-2 and tissue inhibitor of metalloproteinase-3,” Haematologica, vol. 92, no. 4, pp. 440–449, 2007. View at Publisher · View at Google Scholar · View at Scopus
  62. T. Tondreau, N. Meuleman, B. Stamatopoulos et al., “In vitro study of matrix metalloproteinase/tissue inhibitor of metalloproteinase production by mesenchymal stromal cells in response to inflammatory cytokines: the role of their migration in injured tissues,” Cytotherapy, vol. 11, no. 5, pp. 559–569, 2009. View at Publisher · View at Google Scholar · View at Scopus
  63. M. Rafei, J. Hsieh, S. Fortier et al., “Mesenchymal stromal cell derived CCL2 suppresses plasma cell immunoglobulin production via STAT3 inactivation and PAX5 induction,” Blood, vol. 112, no. 13, pp. 4991–4998, 2008. View at Publisher · View at Google Scholar · View at Scopus
  64. M. Rafei, P. M. Campeau, A. Aguilar-Mahecha et al., “Mesenchymal stromal cells ameliorate experimental autoimmune encephalomyelitis by inhibiting CD4 Th17 T cells in a CC chemokine ligand 2-dependent manner,” Journal of Immunology, vol. 182, no. 10, pp. 5994–6002, 2009. View at Publisher · View at Google Scholar · View at Scopus
  65. G. Angus McQuibban, J.-H. Gong, J. P. Wong, J. L. Wallace, I. Clark-Lewis, and C. M. Overall, “Matrix metalloproteinase processing of monocyte chemoattractant proteins generates CC chemokine receptor antagonists with anti-inflammatory properties in vivo,” Blood, vol. 100, no. 4, pp. 1160–1167, 2002. View at Google Scholar · View at Scopus
  66. Y. Ding, D. Xu, G. Feng, A. Bushell, R. J. Muschel, and K. J. Wood, “Mesenchymal stem cells prevent the rejection of fully allogenic islet grafts by the immunosuppressive activity of matrix metalloproteinase-2 and -9,” Diabetes, vol. 58, no. 8, pp. 1797–1806, 2009. View at Publisher · View at Google Scholar · View at Scopus
  67. J. Krstić, H. Obradović, A. Jauković et al., “Urokinase type plasminogen activator mediates Interleukin-17-induced peripheral blood mesenchymal stem cell motility and transendothelial migration,” Biochimica et Biophysica Acta, vol. 1853, no. 2, pp. 431–444, 2015. View at Publisher · View at Google Scholar
  68. H.-K. Yip, C.-K. Sun, T.-H. Tsai et al., “Tissue plasminogen activator enhances mobilization of endothelial progenitor cells and angiogenesis in murine limb ischemia,” International Journal of Cardiology, vol. 168, no. 1, pp. 226–236, 2013. View at Publisher · View at Google Scholar · View at Scopus
  69. V. Stepanova, P.-S. Jayaraman, S. V. Zaitsev et al., “Urokinase-type plasminogen activator (uPA) promotes angiogenesis by attenuating proline-rich homeodomain protein (PRH) transcription factor activity and de-repressing vascular endothelial growth factor (VEGF) receptor expression,” Journal of Biological Chemistry, vol. 291, no. 29, pp. 15029–15045, 2016. View at Publisher · View at Google Scholar · View at Scopus