Table of Contents Author Guidelines Submit a Manuscript
Stem Cells International
Volume 2017, Article ID 7371615, 10 pages
https://doi.org/10.1155/2017/7371615
Research Article

Insulin Promotes the Proliferation of Human Umbilical Cord Matrix-Derived Mesenchymal Stem Cells by Activating the Akt-Cyclin D1 Axis

1Stem Cell Research and Cellular Therapy Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
2Department of Spinal Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
3Laboratory Institute of Minimally Invasive Orthopedic Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
4Department of Biochemistry, School of Medicine, Chungnam National University, Daejeon, Republic of Korea

Correspondence should be addressed to Kaipeng Jing; nc.ude.umdg@gnijk and Jiaqi Chu; nc.ude.umdg@iqaijuhc

Received 1 November 2016; Revised 19 February 2017; Accepted 14 March 2017; Published 18 April 2017

Academic Editor: Laura Lasagni

Copyright © 2017 Peng Li et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. L. da Silva Meirelles, P. C. Chagastelles, and N. B. Nardi, “Mesenchymal stem cells reside in virtually all post-natal organs and tissues,” Journal of Cell Science, vol. 119, no. 11, pp. 2204–2213, 2006. View at Publisher · View at Google Scholar · View at Scopus
  2. C. Nombela-Arrieta, J. Ritz, and L. E. Silberstein, “The elusive nature and function of mesenchymal stem cells,” Nature Reviews Molecular Cell Biology, vol. 12, no. 2, pp. 126–131, 2011. View at Publisher · View at Google Scholar · View at Scopus
  3. L. de Girolamo, E. Lucarelli, G. Alessandri et al., “Mesenchymal stem/stromal cells: a new “cells as drugs” paradigm. Efficacy and critical aspects in cell therapy,” Current Pharmaceutical Design, vol. 19, no. 13, pp. 2459–2473, 2013. View at Publisher · View at Google Scholar · View at Scopus
  4. A. K. Batsali, M. C. Kastrinaki, H. A. Papadaki, and C. Pontikoglou, “Mesenchymal stem cells derived from Wharton’s jelly of the umbilical cord: biological properties and emerging clinical applications,” Current Stem Cell Research & Therapy, vol. 8, no. 2, pp. 144–155, 2013. View at Publisher · View at Google Scholar · View at Scopus
  5. N. Escacena, E. Quesada-Hernandez, V. Capilla-Gonzalez, B. Soria, and A. Hmadcha, “Bottlenecks in the efficient use of advanced therapy medicinal products based on mesenchymal stromal cells,” Stem Cells International, vol. 2015, Article ID 895714, p. 12, 2015. View at Publisher · View at Google Scholar · View at Scopus
  6. K. Bieback, K. Schallmoser, H. Kluter, and D. Strunk, “Clinical protocols for the isolation and expansion of mesenchymal stromal cells,” Transfusion Medicine and Hemotherapy, vol. 35, no. 4, pp. 286–294, 2008. View at Publisher · View at Google Scholar · View at Scopus
  7. G. Gstraunthaler, T. Lindl, and J. van der Valk, “A plea to reduce or replace fetal bovine serum in cell culture media,” Cytotechnology, vol. 65, no. 5, pp. 791–793, 2013. View at Publisher · View at Google Scholar · View at Scopus
  8. J. R. Smith, K. Pfeifer, F. Petry, N. Powell, J. Delzeit, and M. L. Weiss, “Standardizing umbilical cord mesenchymal stromal cells for translation to clinical use: selection of GMP-compliant medium and a simplified isolation method,” Stem Cells International, vol. 2016, Article ID 6810980, p. 14, 2016. View at Publisher · View at Google Scholar · View at Scopus
  9. P. Cirri, M. L. Taddei, P. Chiarugi et al., “Insulin inhibits platelet-derived growth factor-induced cell proliferation,” Molecular Biology of the Cell, vol. 16, no. 1, pp. 73–83, 2005. View at Publisher · View at Google Scholar · View at Scopus
  10. L. Y. Khil, J. Y. Kim, J. B. Yoon et al., “Insulin has a limited effect on the cell cycle progression in 3T3 L1 fibroblasts,” Molecules and Cells, vol. 7, no. 6, pp. 742–748, 1997. View at Google Scholar
  11. Y. Gong, Y. Ma, M. Sinyuk et al., “Insulin-mediated signaling promotes proliferation and survival of glioblastoma through Akt activation,” Neuro-Oncology, vol. 18, no. 1, pp. 48–57, 2016. View at Publisher · View at Google Scholar · View at Scopus
  12. M. Palaniappan, B. Menon, and K. M. Menon, “Stimulatory effect of insulin on theca-interstitial cell proliferation and cell cycle regulatory proteins through MTORC1 dependent pathway,” Molecular and Cellular Endocrinology, vol. 366, no. 1, pp. 81–89, 2013. View at Publisher · View at Google Scholar · View at Scopus
  13. K. Siddle, “Molecular basis of signaling specificity of insulin and IGF receptors: neglected corners and recent advances,” Frontiers in Endocrinology, vol. 3, Article ID 00034, p. 24, 2012. View at Publisher · View at Google Scholar · View at Scopus
  14. K. Strassburger, M. Tiebe, F. Pinna, K. Breuhahn, and A. A. Teleman, “Insulin/IGF signaling drives cell proliferation in part via Yorkie/YAP,” Developmental Biology, vol. 367, no. 2, pp. 187–196, 2012. View at Publisher · View at Google Scholar · View at Scopus
  15. M. Pollak, “Insulin and insulin-like growth factor signalling in neoplasia,” Nature Reviews Cancer, vol. 8, no. 12, pp. 915–928, 2008. View at Publisher · View at Google Scholar · View at Scopus
  16. A. Shukla, J. Grisouard, V. Ehemann, A. Hermani, H. Enzmann, and D. Mayer, “Analysis of signaling pathways related to cell proliferation stimulated by insulin analogs in human mammary epithelial cell lines,” Endocrine-Related Cancer, vol. 16, no. 2, pp. 429–441, 2009. View at Publisher · View at Google Scholar · View at Scopus
  17. Y. Kaburagi, R. Yamashita, Y. Ito et al., “Insulin-induced cell cycle progression is impaired in Chinese hamster ovary cells overexpressing insulin receptor substrate-3,” Endocrinology, vol. 145, no. 12, pp. 5862–5874, 2004. View at Publisher · View at Google Scholar · View at Scopus
  18. P. S. Ward and C. B. Thompson, “Signaling in control of cell growth and metabolism,” Cold Spring Harbor Perspectives in Biology, vol. 4, no. 7, article a006783, 2012. View at Publisher · View at Google Scholar · View at Scopus
  19. H. Kim, M. Kang, S. A. Lee et al., “TM4SF5 accelerates G1/S phase progression via cytosolic p27Kip1 expression and RhoA activity,” Biochimica et Biophysica Acta, vol. 1803, no. 8, pp. 975–982, 2010. View at Publisher · View at Google Scholar · View at Scopus
  20. V. Baldin, J. Lukas, M. J. Marcote, M. Pagano, and G. Draetta, “Cyclin D1 is a nuclear protein required for cell cycle progression in G1,” Genes & Development, vol. 7, no. 5, pp. 812–821, 1993. View at Publisher · View at Google Scholar
  21. J. Dupont, A. Pierre, P. Froment, and C. Moreau, “The insulin-like growth factor axis in cell cycle progression,” Hormone and Metabolic Research, vol. 35, no. 11-12, pp. 740–750, 2003. View at Publisher · View at Google Scholar · View at Scopus
  22. D. Zhang, Q. Fei, J. Li et al., “2-Deoxyglucose reverses the promoting effect of insulin on colorectal cancer cells in vitro,” PLoS One, vol. 11, no. 3, article e0151115, 2016. View at Publisher · View at Google Scholar
  23. G. Svegliati-Baroni, F. Ridolfi, A. Di Sario et al., “Insulin and insulin-like growth factor-1 stimulate proliferation and type I collagen accumulation by human hepatic stellate cells: differential effects on signal transduction pathways,” Hepatology, vol. 29, no. 6, pp. 1743–1751, 1999. View at Publisher · View at Google Scholar · View at Scopus
  24. M. Heni, A. M. Hennige, A. Peter et al., “Insulin promotes glycogen storage and cell proliferation in primary human astrocytes,” PLoS One, vol. 6, no. 6, article e21594, 2011. View at Publisher · View at Google Scholar · View at Scopus
  25. C. Bertoli, J. M. Skotheim, and R. A. de Bruin, “Control of cell cycle transcription during G1 and S phases,” Nature Reviews Molecular Cell Biology, vol. 14, no. 8, pp. 518–528, 2013. View at Publisher · View at Google Scholar · View at Scopus
  26. D. W. Stacey, “Cyclin D1 serves as a cell cycle regulatory switch in actively proliferating cells,” Current Opinion in Cell Biology, vol. 15, no. 2, pp. 158–163, 2003. View at Publisher · View at Google Scholar · View at Scopus
  27. J. W. Harbour and D. C. Dean, “The Rb/E2F pathway: expanding roles and emerging paradigms,” Genes & Development, vol. 14, no. 19, pp. 2393–2409, 2000. View at Publisher · View at Google Scholar · View at Scopus
  28. J. A. Diehl, “Cycling to cancer with cyclin D1,” Cancer Biology & Therapy, vol. 1, no. 3, pp. 226–231, 2002. View at Google Scholar
  29. R. G. Pestell, “New roles of cyclin D1,” The American Journal of Pathology, vol. 183, no. 1, pp. 3–9, 2013. View at Publisher · View at Google Scholar · View at Scopus
  30. C. J. Nelsen, D. G. Rickheim, M. M. Tucker, L. K. Hansen, and J. H. Albrecht, “Evidence that cyclin D1 mediates both growth and proliferation downstream of TOR in hepatocytes,” The Journal of Biological Chemistry, vol. 278, no. 6, pp. 3656–3663, 2003. View at Publisher · View at Google Scholar · View at Scopus
  31. M. Laplante and D. M. Sabatini, “mTOR signaling in growth control and disease,” Cell, vol. 149, no. 2, pp. 274–293, 2012. View at Publisher · View at Google Scholar · View at Scopus
  32. S. Jung, K. M. Panchalingam, L. Rosenberg, and L. A. Behie, “Ex vivo expansion of human mesenchymal stem cells in defined serum-free media,” Stem Cells International, vol. 2012, Article ID 123030, p. 12, 2012. View at Publisher · View at Google Scholar · View at Scopus
  33. G. Gstraunthaler, “Alternatives to the use of fetal bovine serum: serum-free cell culture,” ALTEX, vol. 20, no. 4, pp. 275–281, 2003. View at Google Scholar
  34. S. Jung, A. Sen, L. Rosenberg, and L. A. Behie, “Identification of growth and attachment factors for the serum-free isolation and expansion of human mesenchymal stromal cells,” Cytotherapy, vol. 12, no. 5, pp. 637–657, 2010. View at Publisher · View at Google Scholar · View at Scopus
  35. C. Vater, P. Kasten, and M. Stiehler, “Culture media for the differentiation of mesenchymal stromal cells,” Acta Biomaterialia, vol. 7, no. 2, pp. 463–477, 2011. View at Publisher · View at Google Scholar · View at Scopus
  36. K. Jing, J. Y. Heo, K. S. Song et al., “Expression regulation and function of Pref-1 during adipogenesis of human mesenchymal stem cells (MSCs),” Biochimica et Biophysica Acta, vol. 1791, no. 8, pp. 816–826, 2009. View at Publisher · View at Google Scholar · View at Scopus
  37. L. M. Scavo, M. Karas, M. Murray, and D. Leroith, “Insulin-like growth factor-I stimulates both cell growth and lipogenesis during differentiation of human mesenchymal stem cells into adipocytes,” The Journal of Clinical Endocrinology and Metabolism, vol. 89, no. 7, pp. 3543–3553, 2004. View at Publisher · View at Google Scholar · View at Scopus