Review Article

Application of Stem Cell Therapy for ACL Graft Regeneration

Table 1

Recent animal studies on stem cell therapy for ACL graft regeneration.

AuthorAugmentation/inductionAnimalEvaluationOutcomeOther outcomes

BMSCsHurFibrin glueRabbitHis, CT+
LimFibrin glueRabbitHis, Mech+
FanSilk scaffoldRabbitHis, Mech, CT+
FanSilk scaffoldPigHis, Mech, CT+
LiTriphasic silk graftRabbitHis, Mech, CT+
ZhuElectrospun scaffoldsRabbitHis, Mech, CT+Lattice-like nanofibrous meshes enhance osteogenic differentiation
VaquettePCL electrospun meshSheepHis, Mech+
ZhangPLGA silk scaffoldRabbitHis, Mech+
LiCu-BG/PETRatHis, Mech, CT+
LuDecellularized allogenic STRabbitHis, Mech, CT+Decellularized allograft+BMSCs are better than allograft
SetiawatiVEGFRabbitHis, Mech, MRI+
TengPRPRabbitHis, Mech, CT+PRP enhances osteogenic differentiation
ZhuBMP2 gene therapyRabbitHis, Mech+
ChenbFGF/BMP2 gene therapyRabbitHis, Mech, CT+Combined BMP2 and bFGF exerted more potent effects than lone growth factor
WangTGF gene therapyRabbitHis, Mech, CT+
DongBMP2 gene therapyRabbitHis, Mech+
WeiTGFβ/VEGF gene therapyRabbitHis, Mech+Combined TGFβ-1 and VEGF165 exerted more potent effects than lone growth factor
LiPDGF gene therapyRabbitHis+
FanTriphasic silk scaffold (TGF-β3 and BMP2 gene therapy)RabbitHis, Mech+
PaulyCTGF-electrospun scaffoldsRabbitHis, X-ray+
ADSCsKosakaFibrin glueRabbitHis, Mech+
TeuschlSilk scaffoldSheepHis, CT(-)
ParryPCLF+PET scaffoldRabbitHis, Mech, CT+
KouroupisLeeds-Keio biomaterial; BMP-2/FGF-2PigHis, Mech/BMP-2/FGF-2 induced stem cells to differentiate towards bone and ligament at the ends and central part of the biomaterial scaffold
ZhangRunx2 gene therapyRabbitHis, Mech, CT+Runx2 enhances osteoblast differentiation and inhibits adipogenic differentiation
LDSCsMifuneInjectedRatHis, Mech, CT+
MifuneCell sheetRatHis, Mech+Cell sheet is better than injection
RuanSilk-collagen sponge scaffoldRabbitHis, X-ray+
HuSDF-1 releasing collagen-silkRabbitHis, CT+
TakayamaVEGF gene therapyRatHis, Mech/CD34+ LDSCs have positive effects; overexpression of VEGF impairs biomechanics
KawakamiBMP2 gene therapyRatHis, Mech+BMP2 enhances osteogenic differentiation
TDSCsLuiCell sheetRatHis, Mech, CT+
sMSCsJuGel injectionRatHis+
hUCB-MSCsJangFibrin glueRabbitHis, CT+
Park3D bio-printed scaffoldRabbitHis, CT+

PRP: platelet-rich plasma; His: histology; Mech: mechanics; PCLF+PET: polycaprolactone fumarate scaffolds with polyethylene terephthalate; bFGF: basic fibroblast growth factor; BMP2: bone morphogenetic protein 2; TGF: transforming growth factor; VEGF: vascular endothelial growth factor; PDGF: platelet-derived growth factor; ST: semitendinosis; PCL: polycaprolactone; BMSCs: bone marrow-derived mesenchymal stem cells; ADSCs, adipose-derived stem cells; sMSCs: synovial mesenchymal stem cells; hUCB-MSCs: human umbilical cord blood-derived mesenchymal stem cells; PLGA: lactic-co-glycolic acid; Cu-BG/PET: copper-containing bioactive glass polyethylene terephthalate; Runx2; PCLF+PET: polycaprolactone fumarate+polyethylene terephthalate sutures; SDF: stromal cell-derived factor 1; CTGF: connective tissue growth factor; bFGF: basic fibroblast growth factor.