Table of Contents Author Guidelines Submit a Manuscript
Scientifica
Volume 2012, Article ID 709853, 11 pages
http://dx.doi.org/10.6064/2012/709853
Review Article

Lipoprotein Receptors and Lipid Enzymes in Hepatitis C Virus Entry and Early Steps of Infection

1Department of Mechanisms of Chronic Hepatitis B and C, Centre de Recherche en Cancérologie de Lyon, 69008 Lyon, France
2Inserm U1052/CNRS UMR 5286, CRCL, Université de Lyon, 151 Cours Albert Thomas, 69424 Lyon Cedex 03, France

Received 10 October 2012; Accepted 31 October 2012

Academic Editors: I. Shoji and F. R. Spilki

Copyright © 2012 Eve-Isabelle Pécheur. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. Q. L. Choo, G. Kuo, A. J. Weiner, L. R. Overby, D. W. Bradley, and M. Houghton, “Isolation of a cdna clone derived from a blood-borne non-a, non-b viral hepatitis genome,” Science, vol. 244, pp. 359–362, 1989. View at Google Scholar
  2. B. Bartosch, R. Thimme, H. E. Blum, and F. Zoulim, “Hepatitis C virus-induced hepatocarcinogenesis,” Journal of Hepatology, vol. 51, no. 4, pp. 810–820, 2009. View at Publisher · View at Google Scholar · View at Scopus
  3. R. Bartenschlager, F. Penin, V. Lohmann, and P. André, “Assembly of infectious hepatitis C virus particles,” Trends in Microbiology, vol. 19, no. 2, pp. 95–103, 2011. View at Publisher · View at Google Scholar · View at Scopus
  4. L. Vitvitski, C. Trepo, A. M. Prince, and B. Brotman, “Detection of virus-associated antigen in serum and liver of patients with non-A non-B hepatitis,” The Lancet, vol. 2, no. 8155, pp. 1263–1267, 1979. View at Google Scholar · View at Scopus
  5. D. Moradpour, F. Penin, and C. M. Rice, “Replication of hepatitis C virus,” Nature Reviews Microbiology, vol. 5, no. 6, pp. 453–463, 2007. View at Publisher · View at Google Scholar · View at Scopus
  6. J. M. Gottwein, T. K. H. Scheel, T. B. Jensen et al., “Development and characterization of hepatitis C virus genotype 1-7 cell culture systems: role of CD81 and scavenger receptor class B type I and effect of antiviral drugs,” Hepatology, vol. 49, no. 2, pp. 364–377, 2009. View at Publisher · View at Google Scholar · View at Scopus
  7. J. Dubuisson, “Hepatitis C virus proteins,” World Journal of Gastroenterology, vol. 13, no. 17, pp. 2406–2415, 2007. View at Google Scholar · View at Scopus
  8. M. Perrault and E. I. Pécheur, “The hepatitis C virus and its hepatic environment: a toxic but finely tuned partnership,” Biochemical Journal, vol. 423, no. 3, pp. 303–314, 2009. View at Publisher · View at Google Scholar · View at Scopus
  9. J. T. Stapleton, S. Foung, A. S. Muerhoff, J. Bukh, and P. Simmonds, “The GB viruses: a review and proposed classification of GBV-A, GBV-C (HGV), and GBV-D in genus Pegivirus within the family Flaviviridae,” Journal of General Virology, vol. 92, no. 2, pp. 233–246, 2011. View at Publisher · View at Google Scholar · View at Scopus
  10. F. Penin, V. Brass, N. Appel et al., “Structure and function of the membrane anchor domain of hepatitis C virus nonstructural protein 5A,” The Journal of Biological Chemistry, vol. 279, no. 39, pp. 40835–40843, 2004. View at Publisher · View at Google Scholar · View at Scopus
  11. B. Boson, O. Granio, R. Bartenschlager, and F. L. CossetFranç, “A concerted action of hepatitis C virus P7 and nonstructural protein 2 regulates core localization at the endoplasmic reticulum and virus assembly,” PLoS Pathogens, vol. 7, no. 7, Article ID e1002144, 2011. View at Publisher · View at Google Scholar · View at Scopus
  12. C. I. Popescu, N. Callens, D. Trinel et al., “NS2 protein of hepatitis C virus interacts with structural and non-structural proteins towards virus assembly,” PLoS Pathogens, vol. 7, no. 2, Article ID e1001278, 2011. View at Publisher · View at Google Scholar · View at Scopus
  13. N. F. Fletcher, G. K. Wilson, J. Murray et al., “Hepatitis C virus infects the endothelial cells of the blood-brain barrier,” Gastroenterology, vol. 142, no. 3, pp. 634.e6–643.e6, 2012. View at Google Scholar
  14. R. Thomssen, S. Bonk, C. Propfe, K. H. Heermann, H. G. Kochel, and A. Uy, “Association of hepatitis C virus in human sera with β-lipoprotein,” Medical Microbiology and Immunology, vol. 181, no. 5, pp. 293–300, 1992. View at Publisher · View at Google Scholar · View at Scopus
  15. R. Thomssen, S. Bonk, and A. Thiele, “Density heterogeneities of hepatitis C virus in human sera due to the binding of β-lipoproteins and immunoglobulins,” Medical Microbiology and Immunology, vol. 182, no. 6, pp. 329–334, 1993. View at Google Scholar · View at Scopus
  16. T. Kanto, N. Hayashi, T. Takehara et al., “Density analysis of hepatitis C virus particle population in the circulation of infected hosts: implications for virus neutralization or persistence,” Journal of Hepatology, vol. 22, no. 4, pp. 440–448, 1995. View at Publisher · View at Google Scholar · View at Scopus
  17. A. M. Prince, T. Huima-Byron, T. S. Parker, and D. M. Levine, “Visualization of hepatitis C virions and putative defective interfering particles isolated from low-density lipoproteins,” Journal of Viral Hepatitis, vol. 3, no. 1, pp. 11–17, 1996. View at Google Scholar · View at Scopus
  18. W. Pumeechockchai, D. Bevitt, K. Agarwal et al., “Hepatitis C virus particles of different density in the blood of chronically infected immunocompetent and immunodeficient patients: implications for virus clearance by antibody,” Journal of Medical Virology, vol. 68, no. 3, pp. 335–342, 2002. View at Publisher · View at Google Scholar · View at Scopus
  19. P. André, F. Komurian-Pradel, S. Deforges et al., “Characterization of low- and very-low-density hepatitis C virus RNA-containing particles,” Journal of Virology, vol. 76, no. 14, pp. 6919–6928, 2002. View at Publisher · View at Google Scholar · View at Scopus
  20. P. André, G. Perlemuter, A. Budkowska, C. Bréchot, and V. Lotteau, “Hepatitis C virus particles and lipoprotein metabolism,” Seminars in Liver Disease, vol. 25, no. 1, pp. 93–104, 2005. View at Publisher · View at Google Scholar · View at Scopus
  21. O. Diaz, F. Delers, M. Maynard et al., “Preferential association of Hepatitis C virus with apolipoprotein B48-containing lipoproteins,” Journal of General Virology, vol. 87, no. 10, pp. 2983–2991, 2006. View at Publisher · View at Google Scholar · View at Scopus
  22. V. P. Skipski, “Plasma lipoproteins: composition, structure and biochemistry,” in Blood Lipids and Lipoproteins. Quantitation, Composition and Metabolism, G. J. Nelson, Ed., pp. 471–483, Wiley Interscience, New York, NY, USA, 1972. View at Google Scholar
  23. P. Bonnafous, M. Perrault, O. Le Bihan et al., “Characterization of hepatitis C virus pseudoparticles by cryo-transmission electron microscopy using functionalized magnetic nanobeads,” Journal of General Virology, vol. 91, no. 8, pp. 1919–1930, 2010. View at Publisher · View at Google Scholar · View at Scopus
  24. P. Gastaminza, K. A. Dryden, B. Boyd et al., “Ultrastructural and biophysical characterization of hepatitis C virus particles produced in cell culture,” Journal of Virology, vol. 84, no. 21, pp. 10999–11009, 2010. View at Publisher · View at Google Scholar · View at Scopus
  25. D. L. Williams, M. de La Llera-Moya, S. T. Thuahnai et al., “Binding and cross-linking studies show that scavenger receptor BI interacts with multiple sites in apolipoprotein A-I and identify the class A amphipathic α-helix as a recognition motif,” The Journal of Biological Chemistry, vol. 275, no. 25, pp. 18897–18904, 2000. View at Publisher · View at Google Scholar · View at Scopus
  26. R. W. Mahley, Z. S. Ji, W. J. Brecht, R. D. Miranda, and D. He, “Role of heparan sulfate proteoglycans and the LDL receptor-related protein in remnant lipoprotein metabolism,” Annals of the New York Academy of Sciences, vol. 737, pp. 39–52, 1994. View at Publisher · View at Google Scholar · View at Scopus
  27. S. T. Thuahnai, S. Lund-Katz, G. M. Anantharamaiah, D. L. Williams, and M. C. Phillips, “A quantitative analysis of apolipoprotein binding to SR-BI: multiple binding sites for lipid-free and lipid-associated apolipoproteins,” Journal of Lipid Research, vol. 44, no. 6, pp. 1132–1142, 2003. View at Publisher · View at Google Scholar · View at Scopus
  28. S. U. Nielsen, M. F. Bassendine, A. D. Burt, C. Martin, W. Pumeechockchai, and G. L. Toms, “Association between hepatitis C virus and very-low-density lipoprotein (VLDL)/LDL analyzed in iodixanol density gradients,” Journal of Virology, vol. 80, no. 5, pp. 2418–2428, 2006. View at Publisher · View at Google Scholar · View at Scopus
  29. C. Scholtes, C. Ramiere, D. Rainteau et al., “High plasma level of nucleocapsid-free envelope glycoprotein-positive lipoproteins in hepatitis C patients,” Hepatology, vol. 56, no. 1, pp. 39–48, 2012. View at Google Scholar
  30. E. I. Pécheur, O. Diaz, J. Molle et al., “Morphological characterization and fusion properties of triglyceride-rich lipoproteins obtained from cells transduced with hepatitis C virus glycoproteins,” The Journal of Biological Chemistry, vol. 285, no. 33, pp. 25802–25811, 2010. View at Publisher · View at Google Scholar · View at Scopus
  31. V. Icard, O. Diaz, C. Scholtes et al., “Secretion of hepatitis C virus envelope glycoproteins depends on assembly of apolipoprotein B positive lipoproteins,” PLoS One, vol. 4, no. 1, Article ID e4233, 2009. View at Publisher · View at Google Scholar · View at Scopus
  32. M. Napolitano, A. Giuliani, T. Alonzi et al., “Very low density lipoprotein and low density lipoprotein isolated from patients with hepatitis C infection induce altered cellular lipid metabolism,” Journal of Medical Virology, vol. 79, no. 3, pp. 254–258, 2007. View at Publisher · View at Google Scholar · View at Scopus
  33. M. F. Bassendine, D. A. Sheridan, D. J. Felmlee, S. H. Bridge, G. L. Toms, and R. D. Neely, “Hcv and the hepatic lipid pathway as a potential treatment target,” Journal of Hepatology, vol. 55, pp. 1428–1440, 2011. View at Google Scholar
  34. D. Bradley, K. McCaustland, K. Krawczynski, J. Spelbring, C. Humphrey, and E. H. Cook, “Hepatitis C virus: buoyant density of the factor VIII-derived isolate in sucrose,” Journal of Medical Virology, vol. 34, no. 3, pp. 206–208, 1991. View at Google Scholar · View at Scopus
  35. B. D. Lindenbach, M. J. Evans, A. J. Syder et al., “Virology: complete replication of hepatitis C virus in cell culture,” Science, vol. 309, no. 5734, pp. 623–626, 2005. View at Publisher · View at Google Scholar · View at Scopus
  36. S. Haid, T. Pietschmann, and E. I. Pécheur, “Low pH-dependent hepatitis C virus membrane fusion depends on E2 integrity, target lipid composition, and density of virus particles,” The Journal of Biological Chemistry, vol. 284, no. 26, pp. 17657–17667, 2009. View at Publisher · View at Google Scholar · View at Scopus
  37. A. Merz, G. Long, M. S. Hiet et al., “Biochemical and morphological properties of hepatitis C virus particles and determination of their lipidome,” The Journal of Biological Chemistry, vol. 286, no. 4, pp. 3018–3032, 2011. View at Publisher · View at Google Scholar · View at Scopus
  38. K. S. Chang, J. Jiang, Z. Cai, and G. Luo, “Human apolipoprotein E is required for infectivity and production of hepatitis C virus in cell culture,” Journal of Virology, vol. 81, no. 24, pp. 13783–13793, 2007. View at Publisher · View at Google Scholar · View at Scopus
  39. J. Jiang and G. Luo, “Apolipoprotein E but not B is required for the formation of infectious hepatitis C virus particles,” Journal of Virology, vol. 83, pp. 12680–12691, 2009. View at Publisher · View at Google Scholar · View at Scopus
  40. B. Jammart, M. Michelet, E. I. Pécheur et al., “Vldl-producing and hcv-replicating hepg2 cells secrete apoepos/apobneg hybrid viral particles,” Journal of Virology. In press.
  41. J. Blaising and E. I. Pécheur, “Lipids: a key for hepatitis C virus entry and a potential target for antiviral strategies,” Biochimie, vol. 95, no. 1, pp. 96–102, 2013. View at Google Scholar
  42. L. W. Meredith, G. K. Wilson, N. F. Fletcher, and J. A. McKeating, “Hepatitis c virus entry: beyond receptors,” Reviews in Medical Virology, vol. 22, pp. 182–193, 2012. View at Google Scholar
  43. B. Bartosch and J. Dubuisson, “Recent advances in hepatitis C virus cell entry,” Viruses, vol. 2, no. 3, pp. 692–702, 2010. View at Publisher · View at Google Scholar · View at Scopus
  44. T. Pietschmann, “Virology: final entry key for hepatitis C,” Nature, vol. 457, no. 7231, pp. 797–798, 2009. View at Publisher · View at Google Scholar · View at Scopus
  45. K. Ray, “Hepatitis: Npc1l1 identified as a novel hcv entry factor,” Nature Reviews Gastroenterology & Hepatology, vol. 9, article 124, 2012. View at Google Scholar
  46. N. J. Wood, “Hepatitis C: host receptor tyrosine kinases mediate HCV entry and are a promising new target for antiviral therapy,” Nature Reviews Gastroenterology and Hepatology, vol. 8, no. 7, p. 361, 2011. View at Publisher · View at Google Scholar · View at Scopus
  47. M. E. Burlone and A. Budkowska, “Hepatitis C virus cell entry: role of lipoproteins and cellular receptors,” Journal of General Virology, vol. 90, no. 5, pp. 1055–1070, 2009. View at Publisher · View at Google Scholar · View at Scopus
  48. C. Guguen-Guillouzo and A. Guillouzo, “General review on in vitro hepatocyte models and their applications,” Methods in Molecular Biology, vol. 640, pp. 1–40, 2010. View at Publisher · View at Google Scholar · View at Scopus
  49. A. L. Hubbard, V. A. Barr, and L. J. Scott, “Hepatocyte surface polarity,” in The Liver: Biology and Pathobiology, I. M. Arias, J. L. Boyer, N. Fausto, W. B. Jakoby, D. A. Schachter, and D. A. Shafritz, Eds., pp. 189–214, Raven, New York, NY, USA, 3rd edition, 1994. View at Google Scholar
  50. M. Müller and P. L. M. Jansen, “Molecular aspects of hepatobiliary transport,” American Journal of Physiology, vol. 272, no. 6, pp. G1285–G1303, 1997. View at Google Scholar · View at Scopus
  51. L. Jia, J. L. Betters, and L. Yu, “Niemann-pick C1-like 1 (NPC1L1) protein in intestinal and hepatic cholesterol transport,” Annual Review of Physiology, vol. 73, pp. 239–259, 2011. View at Publisher · View at Google Scholar · View at Scopus
  52. E. Rodriquez-Boulan and W. J. Nelson, “Morphogenesis of the polarized epithelial cell phenotype,” Science, vol. 245, no. 4919, pp. 718–725, 1989. View at Google Scholar · View at Scopus
  53. L. Wang and J. L. Boyer, “The maintenance and generation of membrane polarity in hepatocytes,” Hepatology, vol. 39, no. 4, pp. 892–899, 2004. View at Publisher · View at Google Scholar · View at Scopus
  54. V. Agnello, G. Ábel, M. Elfahal, G. B. Knight, and Q. X. Zhang, “Hepatitis C virus and other flaviviridae viruses enter cells via low density lipoprotein receptor,” Proceedings of the National Academy of Sciences of the United States of America, vol. 96, no. 22, pp. 12766–12771, 1999. View at Publisher · View at Google Scholar · View at Scopus
  55. M. Monazahian, I. Bohme, S. Bonk et al., “Low density lipoprotein receptor as a candidate receptor for hepatitis C virus,” Journal of Medical Virology, vol. 57, pp. 223–229, 1999. View at Google Scholar
  56. S. Wunschmann, J. D. Medh, D. Klinzmann, W. N. Schmidt, and J. T. Stapleton, “Characterization of hepatitis C virus (HCV) and HCV E2 interactions with CD81 and the low-density lipoprotein receptor,” Journal of Virology, vol. 74, no. 21, pp. 10055–10062, 2000. View at Publisher · View at Google Scholar · View at Scopus
  57. S. Ishibashi, J. Herz, N. Maeda, J. L. Goldstein, and M. S. Brown, “The two-receptor model of lipoprotein clearance: tests of the hypothesis in “knockout” mice lacking the low density lipoprotein receptor, apolipoprotein E, or both proteins,” Proceedings of the National Academy of Sciences of the United States of America, vol. 91, no. 10, pp. 4431–4435, 1994. View at Google Scholar · View at Scopus
  58. R. Germi, J. M. Crance, D. Garin et al., “Cellular glycosaminoglycans and low density lipoprotein receptor are involved in hepatitis C virus adsorption,” Journal of Medical Virology, vol. 68, no. 2, pp. 206–215, 2002. View at Publisher · View at Google Scholar · View at Scopus
  59. S. Molina, V. Castet, C. Fournier-Wirth et al., “The low-density lipoprotein receptor plays a role in the infection of primary human hepatocytes by hepatitis C virus,” Journal of Hepatology, vol. 46, no. 3, pp. 411–419, 2007. View at Publisher · View at Google Scholar · View at Scopus
  60. D. M. Owen, H. Huang, J. Ye, and M. Gale Jr., “Apolipoprotein E on hepatitis C virion facilitates infection through interaction with low-density lipoprotein receptor,” Virology, vol. 394, no. 1, pp. 99–108, 2009. View at Publisher · View at Google Scholar · View at Scopus
  61. A. Albecka, S. Belouzard, A. Op de Beeck et al., “Role of ldl receptor in the hepatitis c virus life cycle,” Hepatology, vol. 55, no. 4, pp. 998–1007, 2012. View at Google Scholar
  62. S. J. R. Meex, U. Andreo, J. D. Sparks, and E. A. Fisher, “Huh-7 or hepG2 cells: which is the better model for studying human polipoprotein-B100 assembly and secretion?” Journal of Lipid Research, vol. 52, no. 1, pp. 152–158, 2011. View at Publisher · View at Google Scholar · View at Scopus
  63. S. Benjannet, D. Rhainds, R. Essalmani et al., “NARC-1/PCSK9 and its natural mutants: Zymogen cleavage and effects on the low density lipoprotein (LDL) receptor and LDL cholesterol,” The Journal of Biological Chemistry, vol. 279, no. 47, pp. 48865–48875, 2004. View at Publisher · View at Google Scholar · View at Scopus
  64. N. Ferri, “Proprotein convertase subtilisin/kexin type 9 (pcsk9): from the discovery to the development of new therapies for cardiovascular diseases,” Scientifica, vol. 2012, Article ID 927352, 21 pages, 2012. View at Google Scholar
  65. P. Labonte, S. Begley, C. Guevin et al., “PCSK9 impedes hepatitis C virus infection in vitro and modulates liver CD81 expression,” Hepatology, vol. 50, no. 1, pp. 17–24, 2009. View at Publisher · View at Google Scholar · View at Scopus
  66. B. Mazumdar, A. Banerjee, K. Meyer, and R. Ray, “Hepatitis C virus E1 envelope glycoprotein interacts with apolipoproteins in facilitating entry into hepatocytes,” Hepatology, vol. 54, pp. 1149–1156, 2011. View at Publisher · View at Google Scholar · View at Scopus
  67. T. Fujino, M. Nakamuta, R. Yada et al., “Expression profile of lipid metabolism-associated genes in hepatitis C virus-infected human liver,” Hepatology Research, vol. 40, no. 9, pp. 923–929, 2010. View at Publisher · View at Google Scholar · View at Scopus
  68. M. Nakamuta, T. Fujino, R. Yada et al., “Expression profiles of genes associated with viral entry in HCV-infected human liver,” Journal of Medical Virology, vol. 83, no. 5, pp. 921–927, 2011. View at Publisher · View at Google Scholar · View at Scopus
  69. L. Hu, C. C. van der Hoogt, S. M. S. Espirito Santo et al., “The hepatic uptake of VLDL in lrp-ldlr-/-vldlr-/- mice is regulated by LPL activity and involves proteoglycans and SR-BI,” Journal of Lipid Research, vol. 49, no. 7, pp. 1553–1561, 2008. View at Publisher · View at Google Scholar · View at Scopus
  70. E. Scarselli, H. Ansuini, R. Cerino et al., “The human scavenger receptor class B type I is a novel candidate receptor for the hepatitis C virus,” EMBO Journal, vol. 21, no. 19, pp. 5017–5025, 2002. View at Publisher · View at Google Scholar · View at Scopus
  71. A. Ploss, M. J. Evans, V. A. Gaysinskaya et al., “Human occludin is a hepatitis C virus entry factor required for infection of mouse cells,” Nature, vol. 457, no. 7231, pp. 882–886, 2009. View at Publisher · View at Google Scholar · View at Scopus
  72. B. Bartosch, A. Vitelli, C. Granier et al., “Cell entry of hepatitis c virus requires a set of co-receptors that include the cd81 tetraspanin and the sr-b1 scavenger receptor,” The Journal of Biological Chemistry, vol. 278, no. 43, pp. 41624–41630, 2003. View at Publisher · View at Google Scholar · View at Scopus
  73. J. Grove, S. Nielsen, J. Zhong et al., “Identification of a residue in hepatitis C virus E2 glycoprotein that determines scavenger receptor BI and CD81 receptor dependency and sensitivity to neutralizing antibodies,” Journal of Virology, vol. 82, no. 24, pp. 12020–12029, 2008. View at Publisher · View at Google Scholar · View at Scopus
  74. P. Maillard, T. Huby, U. Andréo, M. Moreau, J. Chapman, and A. Budkowska, “The interaction of natural hepatitis C virus with human scavenger receptor SR-BI/Cla1 is mediated by ApoB-containing lipoproteins,” The FASEB Journal, vol. 20, no. 6, pp. 735–737, 2006. View at Publisher · View at Google Scholar · View at Scopus
  75. V. L. Dao Thi, C. Granier, M. B. Zeisel et al., “Characterization of hepatitis C virus particle subpopulations reveals multiple usage of the scavenger receptor bi for entry steps,” The Journal of Biological Chemistry, vol. 287, pp. 31242–31257, 2012. View at Google Scholar
  76. M. T. Catanese, R. Graziani, T. von Hahn et al., “High-avidity monoclonal antibodies against the human scavenger class B type I receptor efficiently block hepatitis C virus infection in the presence of high-density lipoprotein,” Journal of Virology, vol. 81, no. 15, pp. 8063–8071, 2007. View at Publisher · View at Google Scholar · View at Scopus
  77. M. Régeard, M. Trotard, C. Lepère, P. Gripon, and J. Le Seyec, “Entry of pseudotyped hepatitis C virus into primary human hepatocytes depends on the scavenger class B type I receptor,” Journal of Viral Hepatitis, vol. 15, no. 12, pp. 865–870, 2008. View at Publisher · View at Google Scholar · View at Scopus
  78. M. B. Zeisel, G. Koutsoudakis, E. K. Schnober et al., “Scavenger receptor class B type I is a key host factor for hepatitis C virus infection required for an entry step closely linked to CD81,” Hepatology, vol. 46, no. 6, pp. 1722–1731, 2007. View at Publisher · View at Google Scholar · View at Scopus
  79. K. Lacek, K. Vercauteren, K. Grzyb et al., “Novel human sr-bi antibodies prevent infection and dissemination of hcv in vitro and in humanized mice,” Journal of Hepatology, vol. 57, pp. 17–23, 2012. View at Google Scholar
  80. P. Meuleman, M. T. Catanese, L. Verhoye et al., “A human monoclonal antibody targeting scavenger receptor class b type i precludes hepatitis C virus infection and viral spread in vitro and in vivo,” Hepatology, vol. 55, pp. 364–372, 2012. View at Google Scholar
  81. M. Dreux, V. L. D. Thi, J. Fresquet et al., “Receptor complementation and mutagenesis reveal SR-BI as an essential HCV entry factor and functionally imply its intra- and extra-cellular domains,” PLoS Pathogens, vol. 5, no. 2, Article ID e1000310, 2009. View at Publisher · View at Google Scholar · View at Scopus
  82. B. Bartosch, G. Verney, M. Dreux et al., “An interplay between hypervariable region 1 of the hepatitis C virus E2 glycoprotein, the scavenger receptor BI, and high-density lipoprotein promotes both enhancement of infection and protection against neutralizing antibodies,” Journal of Virology, vol. 79, no. 13, pp. 8217–8229, 2005. View at Publisher · View at Google Scholar · View at Scopus
  83. M. Dreux, T. Pietschmann, C. Granier et al., “High density lipoprotein inhibits hepatitis C virus-neutralizing antibodies by stimulating cell entry via activation of the scavenger receptor BI,” The Journal of Biological Chemistry, vol. 281, no. 27, pp. 18285–18295, 2006. View at Publisher · View at Google Scholar · View at Scopus
  84. M. Dreux, B. Boson, S. Ricard-Blum et al., “The exchangeable apolipoprotein apoC-I promotes membrane fusion of hepatitis C virus,” The Journal of Biological Chemistry, vol. 282, no. 44, pp. 32357–32369, 2007. View at Publisher · View at Google Scholar · View at Scopus
  85. C. Voisset, N. Callens, E. Blanchard, A. Op De Beeck, J. Dubuisson, and N. Vu-Dac, “High density lipoproteins facilitate hepatitis C virus entry through the scavenger receptor class B type I,” The Journal of Biological Chemistry, vol. 280, no. 9, pp. 7793–7799, 2005. View at Publisher · View at Google Scholar · View at Scopus
  86. J. Grove, T. Huby, Z. Stamataki et al., “Scavenger receptor BI and BII expression levels modulate hepatitis C virus infectivity,” Journal of Virology, vol. 81, no. 7, pp. 3162–3169, 2007. View at Publisher · View at Google Scholar · View at Scopus
  87. J. C. Meunier, R. S. Russell, R. E. Engle, K. N. Faulk, R. H. Purcell, and S. U. Emerson, “Apolipoprotein C1 association with hepatitis C virus,” Journal of Virology, vol. 82, no. 19, pp. 9647–9656, 2008. View at Publisher · View at Google Scholar · View at Scopus
  88. J. C. Meunier, R. E. Engle, K. Faulk et al., “Evidence for cross-genotype neutralization of hepatitis C virus pseudo-particles and enhancement of infectivity by apolipoprotein C1,” Proceedings of the National Academy of Sciences of the United States of America, vol. 102, no. 12, pp. 4560–4565, 2005. View at Publisher · View at Google Scholar · View at Scopus
  89. L. C. Smith, H. J. Pownall, and A. M. Gotto Jr., “The plasma lipoproteins: structure and metabolism,” Annual Review of Biochemistry, vol. 47, pp. 751–757, 1978. View at Google Scholar · View at Scopus
  90. M. T. Catanese, H. Ansuini, R. Graziani et al., “Role of scavenger receptor class B type I in hepatitis C virus entry: kinetics and molecular determinants,” Journal of Virology, vol. 84, no. 1, pp. 34–43, 2010. View at Publisher · View at Google Scholar · View at Scopus
  91. O. Kocher and M. Krieger, “Role of the adaptor protein PDZK1 in controlling the HDL receptor SR-BI,” Current Opinion in Lipidology, vol. 20, no. 3, pp. 236–241, 2009. View at Publisher · View at Google Scholar · View at Scopus
  92. N. S. Eyre, H. E. Drummer, and M. R. Beard, “The SR-BI partner PDZK1 facilitates hepatitis C virus entry,” PLoS Pathogens, vol. 6, no. 10, Article ID e1001130, 2010. View at Publisher · View at Google Scholar · View at Scopus
  93. B. Sainz Jr., N. Barretto, D. N. Martin et al., “Identification of the niemann-pick c1-like 1 cholesterol absorption receptor as a new hepatitis c virus entry factor,” Nature Medicine, vol. 18, pp. 281–285, 2012. View at Google Scholar
  94. J. Lupberger, D. J. Felmlee, and T. F. Baumert, “Cholesterol uptake and hepatitis c virus entry,” Journal of Hepatology, vol. 57, pp. 215–217, 2012. View at Google Scholar
  95. C. Jackel-Cram, L. A. Babiuk, and Q. Liu, “Up-regulation of fatty acid synthase promoter by hepatitis C virus core protein: genotype-3a core has a stronger effect than genotype-1b core,” Journal of Hepatology, vol. 46, no. 6, pp. 999–1008, 2007. View at Publisher · View at Google Scholar · View at Scopus
  96. W. Yang, B. L. Hood, S. L. Chadwick et al., “Fatty acid synthase is up-regulated during hepatitis C virus infection and regulates hepatitis C virus entry and production,” Hepatology, vol. 48, no. 5, pp. 1396–1403, 2008. View at Publisher · View at Google Scholar · View at Scopus
  97. D. F. Calvisi, C. Wang, C. Ho et al., “Increased lipogenesis, induced by AKT-mTORC1-RPS6 signaling, promotes development of human hepatocellular carcinoma,” Gastroenterology, vol. 140, no. 3, pp. 1071–1083, 2011. View at Publisher · View at Google Scholar · View at Scopus
  98. J. Joven, E. Espinel, A. Rull et al., “Serum fatty acid synthase concentration is increased in patients with hepatitis viral infection and may assist in the prediction of liver steatosis,” Journal of Clinical Virology, vol. 51, no. 3, pp. 199–201, 2011. View at Publisher · View at Google Scholar · View at Scopus
  99. R. Thomssen and S. Bonk, “Virolytic action of lipoprotein lipase on hepatitis C virus in human sera,” Medical Microbiology and Immunology, vol. 191, no. 1, pp. 17–24, 2002. View at Publisher · View at Google Scholar · View at Scopus
  100. Y. Shimizu, T. Hishiki, K. Sugiyama et al., “Lipoprotein lipase and hepatic triglyceride lipase reduce the infectivity of hepatitis C virus (HCV) through their catalytic activities on HCV-associated lipoproteins,” Virology, vol. 407, no. 1, pp. 152–159, 2010. View at Publisher · View at Google Scholar · View at Scopus
  101. U. Andréo, P. Maillard, O. Kalinina et al., “Lipoprotein lipase mediates hepatitis C virus (HCV) cell entry and inhibits HCV infection,” Cellular Microbiology, vol. 9, no. 10, pp. 2445–2456, 2007. View at Publisher · View at Google Scholar · View at Scopus
  102. P. Maillard, M. Walic, P. Meuleman et al., “Lipoprotein lipase inhibits hepatitis c virus (hcv) infection by blocking virus cell entry,” PLoS One, vol. 6, Article ID e26637, 2011. View at Google Scholar
  103. H. Y. Sun, C. C. Lin, J. C. Lee et al., “Very low-density lipoprotein/lipo-viro particles reverse lipoprotein lipase-mediated inhibition of hepatitis C virus infection via apolipoprotein c-iii,” Gut. In press.