Table of Contents Author Guidelines Submit a Manuscript
Scientifica
Volume 2012 (2012), Article ID 734023, 23 pages
http://dx.doi.org/10.6064/2012/734023
Review Article

Smaller Fleas: Viruses of Microorganisms

1Department of Biology, Ashland University, 401 College Avenue, Ashland, OH 44805, USA
2Department of Microbiology, The Ohio State University, 1680 University Dr., Mansfield, OH 44906, USA

Received 3 June 2012; Accepted 20 June 2012

Academic Editors: H. Akari, J. R. Blazquez, G. Comi, and A. M. Silber

Copyright © 2012 Paul Hyman and Stephen T. Abedon. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. S. T. Abedon, “Phages, ecology, evolution,” in Bacteriophage Ecology, S. T. Abedon, Ed., pp. 1–28, Cambridge University Press, Cambridge, UK, 2008. View at Google Scholar
  2. S. T. Abedon, C. Thomas-Abedon, A. Thomas, and H. Mazure, “Bacteriophage prehistory: is or is not Hankin, 1896, a phage reference?” Bacteriophage, vol. 1, pp. 174–178, 2011. View at Publisher · View at Google Scholar
  3. F. W. Twort, “An investigation on the nature of ultra-microscopic viruses,” The Lancet, vol. 186, no. 4814, pp. 1241–1243, 1915. View at Google Scholar · View at Scopus
  4. F. W. Twort, “An investigation on the nature of ultra-microscopic viruses,” in Bacteriophage, vol. 1, pp. 127–129, 2011. View at Publisher · View at Google Scholar
  5. F. d'Hérelle, “Sur un microbe invisible antagoniste des bacilles dysentériques,” Comptes Rendus de l'Académie des Sciences, vol. 165, pp. 373–375, 1917. View at Google Scholar
  6. “On an invisible microbe antagonistic toward dysenteric bacilli: brief note by Mr. F. D'Herelle, presented by Mr. Roux,” Research in Microbiology, vol. 158, no. 7, pp. 553–554, 2007. View at Publisher · View at Google Scholar · View at Scopus
  7. F. d'Hérelle, “On an invisible microbe antagonistic to dysentery bacilli,” Bacteriophage, vol. 1, pp. 3–5, 2011. View at Publisher · View at Google Scholar
  8. W. C. Summers, Felix D'Herelle and the Origins of Molecular Biology, Yale University Press, New Haven, Conn, USA, 1999.
  9. L. F. Ellis and W. J. Kleinschmidt, “Virus-like particles of a fraction of statolon, a mould product,” Nature, vol. 215, no. 5101, pp. 649–650, 1967. View at Publisher · View at Google Scholar · View at Scopus
  10. M. Hollings, “Viruses associated with a die-back disease of cultivated mushroom,” Nature, vol. 196, no. 4858, pp. 962–965, 1962. View at Publisher · View at Google Scholar · View at Scopus
  11. D. Prangishvili, P. Forterre, and R. A. Garrett, “Viruses of the Archaea: a unifying view,” Nature Reviews Microbiology, vol. 4, no. 11, pp. 837–848, 2006. View at Publisher · View at Google Scholar · View at Scopus
  12. L. S. Diamond, C. F. Mattern, and I. L. Bartgis, “Viruses of Entamoeba histolytica. I. Identification of transmissible virus-like agents,” Journal of Virology, vol. 9, no. 2, pp. 326–341, 1972. View at Google Scholar · View at Scopus
  13. J. A. Mayer and F. J. R. Taylor, “A virus which lyses the marine nanoflagellate Micromonas pusilla,” Nature, vol. 281, no. 5729, pp. 299–301, 1979. View at Google Scholar · View at Scopus
  14. R. M. Brown Jr., “Algal viruses,” Advances in Virus Research, vol. 17, pp. 243–277, 1972. View at Publisher · View at Google Scholar · View at Scopus
  15. L. S. Diamond and C. F. T. Mattern, “Protozoal viruses,” Advances in Virus Research, vol. 20, pp. 87–112, 1976. View at Google Scholar · View at Scopus
  16. P. Hyman and S. T. Abedon, “Bacteriophage host range and bacterial resistance,” Advances in Applied Microbiology, vol. 70, pp. 217–248, 2010. View at Publisher · View at Google Scholar · View at Scopus
  17. H. W. Ackermann, “Classification of bacteriophages,” in The Bacteriophages, R. Calendar and S. T. Abedon, Eds., pp. 8–16, Oxford University Press, Oxford, UK, 2006. View at Google Scholar
  18. P. Hyman and S. T. Abedon, “Bacteriophage (overview),” in Encyclopedia of Microbiology, M. Schaecter, Ed., pp. 322–338, Elsevier, Oxford, UK, 2009. View at Google Scholar
  19. S. T. Abedon, “Size does matter–distinguishing bacteriophages by genome length (and ‘breadth’),” Microbiology Australia, vol. 32, no. 2, pp. 90–91, 2011. View at Google Scholar
  20. W. B. Whitman, D. C. Coleman, and W. J. Wiebe, “Prokaryotes: the unseen majority,” Proceedings of the National Academy of Sciences of the United States of America, vol. 95, no. 12, pp. 6578–6583, 1998. View at Publisher · View at Google Scholar · View at Scopus
  21. K. E. Wommack and R. R. Colwell, “Virioplankton: viruses in aquatic ecosystems,” Microbiology and Molecular Biology Reviews, vol. 64, no. 1, pp. 69–114, 2000. View at Google Scholar · View at Scopus
  22. M. G. Weinbauer, “Ecology of prokaryotic viruses,” FEMS Microbiology Reviews, vol. 28, no. 2, pp. 127–181, 2004. View at Publisher · View at Google Scholar · View at Scopus
  23. K. E. Williamson, “Soil phage ecology: abundance, distribution, and interactions with bacterial hosts,” in Biocommunication of Soil Microorganisms, G. Witzany, Ed., pp. 113–136, Springer, New York, NY, USA, 2011. View at Google Scholar
  24. R. W. Hendrix, “Phage evolution,” in Bacteriophage Ecology, S. T. Abedon, Ed., pp. 177–194, Cambridge University Press, Cambridge, UK, 2008. View at Google Scholar
  25. M. G. Weinbauer and F. Rassoulzadegan, “Are viruses driving microbial diversification and diversity?” Environmental Microbiology, vol. 6, no. 1, pp. 1–11, 2004. View at Publisher · View at Google Scholar · View at Scopus
  26. R. W. Hendrix, “Bacteriophage evolution and the role of phages in host evolution,” in Phages: Their Role in Bacterial Pathogenesis and Biotechnology, M. K. Waldor, D. I. Friedman, and S. L. Adhya, Eds., pp. 55–65, ASM Press, Washington, DC, USA, 2005. View at Google Scholar
  27. T. F. Thingstad, G. Bratbak, and M. Heldal, “Aquatic phage ecology,” in Bacteriophage Ecology, S. T. Abedon, Ed., pp. 251–280, Cambridge University Press, Cambridge, UK, 2008. View at Google Scholar
  28. R. Danovaro, C. Corinaldesi, A. Dell'Anno et al., “Marine viruses and global climate change,” FEMS Microbiology Reviews, vol. 35, pp. 993–1034, 2011. View at Publisher · View at Google Scholar
  29. A. M. Q. King, M. J. Adams, E. B. Carstens, and E. J. Lefkowitz, Virus Taxonomy: Ninth Report of the International Committee on Taxonomy of Viruses, Elsevier Academic Press, London, UK, 2012.
  30. S. T. Abedon, “Phage evolution and ecology,” Advances in Applied Microbiology, vol. 67, pp. 1–45, 2009. View at Publisher · View at Google Scholar · View at Scopus
  31. E. Kutter and A. Sulakvelidze, Bacteriophages: Biology and Application, CRC Press, Boca Raton, Fla, USA, 2005.
  32. R. Calendar and S. T. Abedon, The Bacteriophages, Oxford University Press, Oxford, UK, 2006.
  33. S. Mc Grath and D. van Sinderen, Bacteriophage: Genetics and Molecular Biology, Caister Academic Press, Norfolk, UK, 2007.
  34. S. T. Abedon, Bacteriophage Ecology: Population Growth, Evolution, and Impact of Bacterial Viruses, Cambridge University Press, Cambridge, UK, 2008.
  35. M. Clokie and A. Kropinski, Bacteriophages: Methods and Protocols, Humana Press, Totowa, NJ, USA, 2009.
  36. P. M. Sabour and M. W. Griffiths, Bacteriophages in the Control of Food and, Waterborne Pathogens, ASM Press, Washington, DC, USA, 2010.
  37. S. T. Abedon, S. Duffy, and P. E. Turner, “Bacteriophage ecology,” in Encyclopedia of Microbiology, M. Schaecter, Ed., pp. 42–57, Elsevier, Oxford, UK, 2009. View at Google Scholar
  38. S. T. Abedon, S. J. Kuhl, B. G. Blasdel, and E. M. Kutter, “Phage treatment of human infections,” Bacteriophage, vol. 1, pp. 66–85, 2011. View at Publisher · View at Google Scholar
  39. M. Pina, A. Bize, P. Forterre, and D. Prangishvili, “The archeoviruses,” FEMS Microbiology Reviews, vol. 35, pp. 1035–1054, 2011. View at Publisher · View at Google Scholar · View at Scopus
  40. M. Krupovic, M. F. White, P. Forterre, and D. Prangishvili, “Postcards from the edge: structural genomics of archaeal viruses,” Advances in Virus Research, vol. 82, pp. 33–62, 2012. View at Publisher · View at Google Scholar
  41. H. W. Ackermann, “Bacteriophage electron microscopy,” Advances in Virus Research, vol. 82, pp. 1–32, 2012. View at Publisher · View at Google Scholar
  42. E. Roine, P. Kukkaro, L. Paulin et al., “New, closely related haloarchaeal viral elements with different nucleic acid types,” Journal of Virology, vol. 84, no. 7, pp. 3682–3689, 2010. View at Publisher · View at Google Scholar · View at Scopus
  43. K. M. Stedman, D. Prangishvili, and W. Zillig, “Viruses of archaea,” in The Bacteriophages, R. Calendar and S. T. Abedon, Eds., pp. 499–516, Oxford University Press, Oxford, UK, 2006. View at Google Scholar
  44. E. E. Gill and F. S. L. Brinkman, “The proportional lack of archaeal pathogens: do viruses/phages hold the key?” BioEssays, vol. 33, no. 4, pp. 248–254, 2011. View at Publisher · View at Google Scholar · View at Scopus
  45. S. T. Abedon and J. T. LeJeune, “Why bacteriophage encode exotoxins and other virulence factors,” Evolutionary Bioinformatics Online, vol. 1, pp. 97–110, 2005. View at Google Scholar
  46. P. Hyman and S. T. Abedon, “Phage ecology of bacterial pathogenesis,” in Bacteriophage Ecology, S. T. Abedon, Ed., pp. 353–385, Cambridge University Press, Cambridge, UK, 2008. View at Google Scholar
  47. K. Nagasaki, “Dinoflagellates, diatoms, and their viruses,” Journal of Microbiology, vol. 46, no. 3, pp. 235–243, 2008. View at Publisher · View at Google Scholar · View at Scopus
  48. W. H. Wilson, J. L. Van Etten, and M. J. Allen, “The Phycodnaviridae: the story of how tiny giants rule the world,” Current Topics in Microbiology and Immunology, vol. 328, pp. 1–42, 2009. View at Publisher · View at Google Scholar · View at Scopus
  49. P. Colson, L. de X, G. Fournous, and D. Raoult, “Reclassification of giant viruses composing a fourth domain of life in the new order megavirales,” Intervirology, vol. 55, no. 5, pp. 321–332, 2012. View at Publisher · View at Google Scholar
  50. S. M. Short, “The ecology of viruses that infect eukaryotic algae,” Environmental Microbiology. In press. View at Publisher · View at Google Scholar
  51. J. L. Van Etten and D. D. Dunigan, “Chloroviruses: not your everyday plant virus,” Trends in Plant Science, vol. 17, pp. 1–8, 2012. View at Publisher · View at Google Scholar
  52. T. Yamada, “Giant viruses in the environment: their origins and evolution,” Current Opinion in Virology, vol. 1, no. 1, pp. 58–62, 2011. View at Publisher · View at Google Scholar · View at Scopus
  53. D. D. Dunigan, L. A. Fitzgerald, and J. L. Van Etten, “Phycodnaviruses: a peek at genetic diversity,” Virus Research, vol. 117, no. 1, pp. 119–132, 2006. View at Publisher · View at Google Scholar · View at Scopus
  54. N. Delaroque, L. Maier, R. Knippers, and D. G. Müller, “Persistent virus integration into the genome of its algal host, Ectocarpus siliculosus (Phaeophyceae),” Journal of General Virology, vol. 80, no. 6, pp. 1367–1370, 1999. View at Google Scholar · View at Scopus
  55. A. S. Lang, M. L. Rise, A. I. Culley, and G. F. Steward, “RNA viruses in the sea,” FEMS Microbiology Reviews, vol. 33, no. 2, pp. 295–323, 2009. View at Publisher · View at Google Scholar · View at Scopus
  56. C. P. D. Brussaard, A. A. M. Noordeloos, R. A. Sandaa, M. Heldal, and G. Bratbak, “Discovery of a dsRNA virus infecting the marine photosynthetic protist Micromonas pusilla,” Virology, vol. 319, no. 2, pp. 280–291, 2004. View at Publisher · View at Google Scholar · View at Scopus
  57. K. Nagasaki, Y. Tomaru, N. Katanozaka et al., “Isolation and characterization of a novel single-stranded RNA virus infecting the bloom-forming diatom Rhizosolenia setigera,” Applied and Environmental Microbiology, vol. 70, no. 2, pp. 704–711, 2004. View at Publisher · View at Google Scholar · View at Scopus
  58. Y. Tomaru, N. Katanozaka, K. Nishida et al., “Isolation and characterization of two distinct types of HcRNAV, a single-stranded RNA virus infecting the bivalve-killing microalga Heterocapsa circularisquama,” Aquatic Microbial Ecology, vol. 34, no. 3, pp. 207–218, 2004. View at Google Scholar · View at Scopus
  59. E. V. Koonin and N. Yutin, “Origin and evolution of eukaryotic large nucleo-cytoplasmic DNA viruses,” Intervirology, vol. 53, no. 5, pp. 284–292, 2010. View at Publisher · View at Google Scholar · View at Scopus
  60. D. R. Garza and C. A. Suttle, “Large double-stranded DNA viruses which cause the lysis of a marine heterotrophic nanoflagellate (Bodo sp.) occur in natural marine viral communities,” Aquatic Microbial Ecology, vol. 9, no. 3, pp. 203–210, 1995. View at Google Scholar · View at Scopus
  61. M. G. Fischer, M. J. Allen, W. H. Wilson, and C. A. Suttle, “Giant virus with a remarkable complement of genes infects marine zooplankton,” Proceedings of the National Academy of Sciences of the United States of America, vol. 107, no. 45, pp. 19508–19513, 2010. View at Publisher · View at Google Scholar · View at Scopus
  62. M. Boyer, N. Yutin, I. Pagnier et al., “Giant Marseillevirus highlights the role of amoebae as a melting pot in emergence of chimeric microorganisms,” Proceedings of the National Academy of Sciences of the United States of America, vol. 106, no. 51, pp. 21848–21853, 2009. View at Publisher · View at Google Scholar · View at Scopus
  63. V. Thomas, C. Bertelli, F. Collyn et al., “Lausannevirus, a giant amoebal virus encoding histone doublets,” Environmental Microbiology, vol. 13, no. 6, pp. 1454–1466, 2011. View at Publisher · View at Google Scholar · View at Scopus
  64. Y. Takao, K. Nagasaki, K. Mise, T. Okuno, and D. Honda, “Isolation and characterization of a novel single-stranded RNA virus infectious to a marine fungoid protist, Schizochytrium sp. (Thraustochytriaceae, Labyrinthulea),” Applied and Environmental Microbiology, vol. 71, no. 8, pp. 4516–4522, 2005. View at Publisher · View at Google Scholar · View at Scopus
  65. Y. Takao, K. Mise, K. Nagasaki, T. Okuno, and D. Honda, “Complete nucleotide sequence and genome organization of a single-stranded RNA virus infecting the marine fungoid protist Schizochytrium sp,” Journal of General Virology, vol. 87, no. 3, pp. 723–733, 2006. View at Publisher · View at Google Scholar · View at Scopus
  66. A. L. Wang and C. C. Wang, “Viruses of parasitic protozoa,” Parasitology Today, vol. 7, no. 4, pp. 76–80, 1991. View at Google Scholar · View at Scopus
  67. J. Fraga, L. Rojas, I. Sariego, and A. Fernandez, “Genetic characterization of three Cuban Trichomonas vaginalis virus. Phylogeny of Totiviridae family,” Infection, Genetics and Evolution, vol. 12, pp. 113–120, 2012. View at Publisher · View at Google Scholar
  68. D. Moreira and C. Brochier-Armanet, “Giant viruses, giant chimeras: the multiple evolutionary histories of Mimivirus genes,” BMC Evolutionary Biology, vol. 8, no. 1, article 12, 2008. View at Publisher · View at Google Scholar · View at Scopus
  69. J. Filée, N. Pouget, and M. Chandler, “Phylogenetic evidence for extensive lateral acquisition of cellular genes by Nucleocytoplasmic large DNA viruses,” BMC Evolutionary Biology, vol. 8, no. 1, article 320, 2008. View at Publisher · View at Google Scholar · View at Scopus
  70. D. Moreira and P. López-García, “Ten reasons to exclude viruses from the tree of life,” Nature Reviews Microbiology, vol. 7, no. 4, pp. 306–311, 2009. View at Publisher · View at Google Scholar · View at Scopus
  71. J. M. Claverie and C. Abergel, “Mimivirus: the emerging paradox of quasi-autonomous viruses,” Trends in Genetics, vol. 26, no. 10, pp. 431–437, 2010. View at Publisher · View at Google Scholar · View at Scopus
  72. E. V. Koonin, T. G. Senkevich, and V. V. Dolja, “The ancient virus world and evolution of cells,” Biology Direct, vol. 1, article 29, 2006. View at Publisher · View at Google Scholar · View at Scopus
  73. J. Filée and M. Chandler, “Gene exchange and the origin of giant viruses,” Intervirology, vol. 53, no. 5, pp. 354–361, 2010. View at Publisher · View at Google Scholar · View at Scopus
  74. M. Legendre, D. Arslan, C. Abergel, and J. M. Claverie, “Genomics of megavirus and the elusive fourth domain of life,” Communicative & Integrative Biology, vol. 5, pp. 102–106, 2012. View at Google Scholar
  75. W. Ford Doolittle, “You are what you eat: a gene transfer ratchet could account for bacterial genes in eukaryotic nuclear genomes,” Trends in Genetics, vol. 14, no. 8, pp. 307–311, 1998. View at Publisher · View at Google Scholar · View at Scopus
  76. J. O. Andersson, “Lateral gene transfer in eukaryotes,” Cellular and Molecular Life Sciences, vol. 62, no. 11, pp. 1182–1197, 2005. View at Publisher · View at Google Scholar · View at Scopus
  77. P. J. Keeling and J. D. Palmer, “Horizontal gene transfer in eukaryotic evolution,” Nature Reviews Genetics, vol. 9, no. 8, pp. 605–618, 2008. View at Publisher · View at Google Scholar · View at Scopus
  78. M. Göker, C. Scheuner, H. P. Klenk, J. B. Stielow, and W. Menzel, “Codivergence of mycoviruses with their hosts,” PLoS ONE, vol. 6, no. 7, Article ID e22252, 2011. View at Publisher · View at Google Scholar · View at Scopus
  79. S. A. Ghabrial and N. Suzuki, “Viruses of plant pathogenic fungi,” Annual Review of Phytopathology, vol. 47, pp. 353–384, 2009. View at Publisher · View at Google Scholar · View at Scopus
  80. M. N. Pearson, R. E. Beever, B. Boine, and K. Arthur, “Mycoviruses of filamentous fungi and their relevance to plant pathology,” Molecular Plant Pathology, vol. 10, no. 1, pp. 115–128, 2009. View at Publisher · View at Google Scholar · View at Scopus
  81. H. P. Molitoris, M. Hollings, and I. J. Wood, Fungal Viruses, Springer, New York, NY, USA, 1979.
  82. K. W. Buck, Fungal Virology, CRC Press, Boca Raton, Fla, USA, 1986.
  83. R. H. Whittaker, “New concepts of kingdoms or organisms. Evolutionary relations are better represented by new classifications than by the traditional two kingdoms,” Science, vol. 163, no. 3863, pp. 150–160, 1969. View at Google Scholar · View at Scopus
  84. Y. Tomaru, Y. Takao, H. Suzuki, T. Nagumo, and K. Nagasaki, “Isolation and characterization of a single-stranded RNA virus infecting the bloom-forming diatom Chaetoceros socialis,” Applied and Environmental Microbiology, vol. 75, no. 8, pp. 2375–2381, 2009. View at Publisher · View at Google Scholar · View at Scopus
  85. Y. Tomaru, Y. Takao, H. Suzuki, T. Nagumo, K. Koike, and K. Nagasaki, “Isolation and characterization of a single-stranded DNA virus infecting Chaetoceros lorenzianus Grunow,” Applied and Environmental Microbiology, vol. 77, no. 15, pp. 5285–5293, 2011. View at Publisher · View at Google Scholar · View at Scopus
  86. X. Peng, T. Basta, M. Häring, R. A. Garrett, and D. Prangishvili, “Genome of the Acidianus bottle-shaped virus and insights into the replication and packaging mechanisms,” Virology, vol. 364, no. 1, pp. 237–243, 2007. View at Publisher · View at Google Scholar · View at Scopus
  87. D. Prangishvili, G. Vestergaard, M. Häring et al., “Structural and genomic properties of the hyperthermophilic archaeal virus ATV with an extracellular stage of the reproductive cycle,” Journal of Molecular Biology, vol. 359, no. 5, pp. 1203–1216, 2006. View at Publisher · View at Google Scholar · View at Scopus
  88. M. Bettstetter, X. Peng, R. A. Garrett, and D. Prangishvili, “AFV1, a novel virus infecting hyperthermophilic archaea of the genus Acidianus,” Virology, vol. 315, no. 1, pp. 68–79, 2003. View at Publisher · View at Google Scholar · View at Scopus
  89. M. Häring, R. Rachel, X. Peng, R. A. Garrett, and D. Prangishvili, “Viral diversity in hot springs of Pozzuoli, Italy, and characterization of a unique archaeal virus, Acidianus bottle-shaped virus, from a new family, the Ampullaviridae,” Journal of Virology, vol. 79, no. 15, pp. 9904–9911, 2005. View at Publisher · View at Google Scholar · View at Scopus
  90. M. Häring, G. Vestergaard, K. Brügger, R. Rachel, R. A. Garrett, and D. Prangishvili, “Structure and genome organization of AFV2, a novel archaeal lipothrixvirus with unusual terminal and core structures,” Journal of Bacteriology, vol. 187, no. 11, pp. 3855–3858, 2005. View at Publisher · View at Google Scholar · View at Scopus
  91. T. Mochizuki, T. Yoshida, R. Tanaka, P. Forterre, Y. Sako, and D. Prangishvili, “Diversity of viruses of the hyperthermophilic archaeal genus Aeropyrum, and isolation of the Aeropyrum pernix bacilliform virus 1, APBV1, the first representative of the family Clavaviridae,” Virology, vol. 402, no. 2, pp. 347–354, 2010. View at Publisher · View at Google Scholar · View at Scopus
  92. M. Häring, X. Peng, K. Brügger et al., “Morphology and genome organization of the virus PSV of the hyperthermophilic archaeal genera Pyrobaculum and Thermoproteus: a novel virus family, the Globuloviridae,” Virology, vol. 323, no. 2, pp. 233–242, 2004. View at Publisher · View at Google Scholar · View at Scopus
  93. H. P. Arnold, W. Zillig, U. Ziese et al., “A novel lipothrixvirus, SIFV, of the extremely thermophilic crenarchaeon Sulfolobus,” Virology, vol. 267, no. 2, pp. 252–266, 2000. View at Publisher · View at Google Scholar · View at Scopus
  94. D. Prangishvili, H. P. Arnold, D. Götz et al., “A novel virus family, the Rudiviridae: structure, virus-host interactions and genome variability of the sulfolobus viruses SIRV1 and SIRV2,” Genetics, vol. 152, no. 4, pp. 1387–1396, 1999. View at Google Scholar · View at Scopus
  95. H. P. Arnold, U. Ziese, and W. Zillig, “SNDV, a novel virus of the extremely thermophilic and acidophilic archaeon Sulfolobus,” Virology, vol. 272, no. 2, pp. 409–416, 2000. View at Publisher · View at Google Scholar · View at Scopus
  96. C. Schleper, K. Kubo, and W. Zillig, “The particle SSV1 from the extremely thermophilic archaeon Sulfolobus is a virus: demonstration of infectivity and of transfection with viral DNA,” Proceedings of the National Academy of Sciences of the United States of America, vol. 89, no. 16, pp. 7645–7649, 1992. View at Google Scholar · View at Scopus
  97. S. Yeats, P. McWilliam, and W. Zillig, “A plasmid in the archaebacterium Sulfolobus acidocaldarius,” The EMBO Journal, vol. 1, pp. 1035–1038, 1982. View at Google Scholar
  98. G. Rice, L. Tang, K. Stedman et al., “The structure of a thermophilic archaeal virus shows a double-stranded DNA viral capsid type that spans all domains of life,” Proceedings of the National Academy of Sciences of the United States of America, vol. 101, no. 20, pp. 7716–7720, 2004. View at Publisher · View at Google Scholar · View at Scopus
  99. D. Janekovic, S. Wunderl, I. Holz, W. Zillig, A. Gierl, and H. Neumann, “TTV!, TTV2 and TTV3, a family of viruses of the extremely thermophilic, anaerobic, sulfur reducing archaebacterium, Thermoproteus tenax,” Molecular Genetics & Genomics, vol. 192, pp. 39–45, 1983. View at Publisher · View at Google Scholar
  100. C. Bath and M. L. Dyall-smith, “His1, an archaeal virus of the Fuselloviridae family that infects Haloarcula hispanica,” Journal of Virology, vol. 72, no. 11, pp. 9392–9395, 1998. View at Google Scholar · View at Scopus
  101. K. Porter, P. Kukkaro, J. K. H. Bamford et al., “SH1: a novel, spherical halovirus isolated from an Australian hypersaline lake,” Virology, vol. 335, no. 1, pp. 22–33, 2005. View at Publisher · View at Google Scholar · View at Scopus
  102. S. L. Tang, S. Nuttall, K. Ngui, C. Fisher, P. Lopez, and M. Dyall-Smith, “HF2: a double-stranded DNA tailed haloarchaeal virus with a mosaic genome,” Molecular Microbiology, vol. 44, no. 1, pp. 283–296, 2002. View at Publisher · View at Google Scholar · View at Scopus
  103. M. K. Pietilä, E. Roine, L. Paulin, N. Kalkkinen, and D. H. Bamford, “An ssDNA virus infecting archaea: a new lineage of viruses with a membrane envelope,” Molecular Microbiology, vol. 72, no. 2, pp. 307–319, 2009. View at Publisher · View at Google Scholar · View at Scopus
  104. L. Meile, U. Jenal, D. Studer, M. Jordan, and T. Leisinger, “Characterization of ψM1, a virulent phage of Methanobacterium thermoautotrophicum Marburg,” Archives of Microbiology, vol. 152, no. 2, pp. 105–110, 1989. View at Publisher · View at Google Scholar · View at Scopus
  105. P. Pfister, A. Wasserfallen, R. Stettler, and T. Leisinger, “Molecular analysis of Methanobacterium phage ψM2,” Molecular Microbiology, vol. 30, no. 2, pp. 233–244, 1998. View at Publisher · View at Google Scholar · View at Scopus
  106. S. T. Abedon, “Disambiguating bacteriophage pseudolysogeny: an historical analysis of lysogeny, pseudolysogeny, and the phage carrier state,” in Contemporary Trends in Bacteriophage Research, H. T. Adams, Ed., pp. 285–307, Nova Science Publishers, Hauppauge, NY, USA, 2009. View at Google Scholar
  107. A. Martin, S. Yeats, D. Janekovic, W. D. Reiter, W. Aicher, and W. Zillig, “SAV 1, a temperate u.v.inducible DNA virus-like particle from the archaebacterium Sulfolobus acidocaldarius isolate B12,” The EMBO Journal, vol. 3, pp. 2165–2168, 1984. View at Google Scholar
  108. M. L. Nibert, K. M. Woods, S. J. Upton, and S. A. Ghabrial, “Cryspovirus: a new genus of protozoan viruses in the family Partitiviridae,” Archives of Virology, vol. 154, no. 12, pp. 1959–1965, 2009. View at Publisher · View at Google Scholar · View at Scopus
  109. V. H. Dawe and C. W. Kuhn, “Isolation and characterization of a double-stranded DNA mycovirus infecting the aquatic fungus, Rhizidiomyces,” Virology, vol. 130, no. 1, pp. 21–28, 1983. View at Google Scholar · View at Scopus
  110. S. Chiba, L. Salaipeth, Y. H. Lin, A. Sasaki, S. Kanematsu, and N. Suzuki, “A novel bipartite double-stranded RNA mycovirus from the white root rot fungus Rosellinia necatrix: molecular and biological characterization, taxonomic considerations, and potential for biological control,” Journal of Virology, vol. 83, no. 24, pp. 12801–12812, 2009. View at Publisher · View at Google Scholar · View at Scopus
  111. Y. H. Lin, S. Chiba, A. Tani et al., “A novel quadripartite dsRNA virus isolated from a phytopathogenic filamentous fungus, Rosellinia necatrix,” Virology, vol. 426, pp. 42–50, 2012. View at Publisher · View at Google Scholar
  112. X. Yu, B. Li, Y. Fu et al., “A geminivirus-related DNA mycovirus that confers hypovirulence to a plant pathogenic fungus,” Proceedings of the National Academy of Sciences of the United States of America, vol. 107, no. 18, pp. 8387–8392, 2010. View at Publisher · View at Google Scholar · View at Scopus
  113. A. G. Vonk, C. W. Wieland, M. Versteegen et al., “Influence of endogenous pro-inflammatory cytokines on neutrophil-mediated of Candida albicans pseudohyphae, quantified in a modified tetrazolium dye assay,” Medical Mycology, vol. 43, no. 6, pp. 551–557, 2005. View at Publisher · View at Google Scholar · View at Scopus
  114. J. Heitman, “Microbial pathogens in the fungal kingdom,” Fungal Biology Reviews, vol. 25, no. 1, pp. 48–60, 2011. View at Publisher · View at Google Scholar · View at Scopus
  115. M. A. Allen, F. Goh, B. P. Burns, and B. A. Neilan, “Bacterial, archaeal and eukaryotic diversity of smooth and pustular microbial mat communities in the hypersaline lagoon of Shark Bay,” Geobiology, vol. 7, no. 1, pp. 82–96, 2009. View at Publisher · View at Google Scholar · View at Scopus
  116. S. M. Awramik, “Precambrian columnar stromatolite diversity: reflection of metazoan appearance,” Science, vol. 174, no. 4011, pp. 825–827, 1971. View at Google Scholar · View at Scopus
  117. G. W. Beakes, S. L. Glockling, and S. Sekimoto, “The evolutionary phylogeny of the oomycete "fungi",” Protoplasma, vol. 249, pp. 3–19, 2012. View at Publisher · View at Google Scholar · View at Scopus
  118. D. Biao, “The biology of viroid-host interactions,” Annual Review of Phytopathology, vol. 47, pp. 105–131, 2009. View at Publisher · View at Google Scholar · View at Scopus
  119. M. Los, J. Kuzio, M. R. McConnell, A. M. Kropinski, G. Wegrzyn, and G. E. Christie, “Lysogenic conversion in bacteria,” in Bacteriophages in the Control of Food- and Waterborne Pathogens, P. M. Sabour and M. W. Griffiths, Eds., ASM Press, Washington, DC, USA, 2010. View at Google Scholar
  120. H. Bussey, T. Vernet, and A. M. Sdicu, “Mutual antagonism among killer yeasts: competition between K1 and K2 killers and a novel cDNA-based K1-K2 killer strain of Saccharomyces cerevisiae,” Canadian Journal of Microbiology, vol. 34, no. 1, pp. 38–44, 1988. View at Google Scholar · View at Scopus
  121. M. J. Schmitt and F. Breinig, “Yeast viral killer toxins: lethality and self-protection,” Nature Reviews Microbiology, vol. 4, no. 3, pp. 212–221, 2006. View at Publisher · View at Google Scholar · View at Scopus
  122. M. A. Riley and J. E. Wertz, “Bacteriocins: evolution, ecology, and application,” Annual Review of Microbiology, vol. 56, pp. 117–137, 2002. View at Publisher · View at Google Scholar · View at Scopus
  123. D. L. Nuss, “Mycoviruses, RNA silencing, and viral RNA recombination,” Advances in Virus Research, vol. 80, pp. 25–48, 2011. View at Publisher · View at Google Scholar · View at Scopus
  124. R. B. Wickner, “Yeast virology,” The FASEB Journal, vol. 3, no. 11, pp. 2257–2265, 1989. View at Google Scholar · View at Scopus
  125. R. B. Wickner, “Prions and RNA viruses of Saccharomyces cerevisiae,” Annual Review of Genetics, vol. 30, pp. 109–139, 1996. View at Publisher · View at Google Scholar · View at Scopus
  126. T. S. Feldman, M. R. Morsy, and M. J. Roossinck, “Are communities of microbial symbionts more diverse than communities of macrobial hosts?” Fungal Biology, vol. 116, pp. 465–477, 2012. View at Publisher · View at Google Scholar
  127. Y. Ikeda, H. Shimura, R. Kitahara, C. Masuta, and T. Ezawa, “A novel virus-like double-stranded RNA in an obligate biotroph arbuscular mycorrhizal fungus: a hidden player in mycorrhizal symbiosis,” Molecular Plant-Microbe Interactions, vol. 25, no. 7, pp. 1005–1012, 2012. View at Publisher · View at Google Scholar
  128. W. W. J. Van De Sande, J. R. Lo-Ten-Foe, A. Van Belkum, M. G. Netea, B. J. Kullberg, and A. G. Vonk, “Mycoviruses: future therapeutic agents of invasive fungal infections in humans?” European Journal of Clinical Microbiology and Infectious Diseases, vol. 29, no. 7, pp. 755–763, 2010. View at Publisher · View at Google Scholar · View at Scopus
  129. D. L. Nuss, “Biological control of chestnut blight: an example of virus-mediated attenuation of fungal pathogenesis,” Microbiological Reviews, vol. 56, no. 4, pp. 561–576, 1992. View at Google Scholar · View at Scopus
  130. P. Forterre, “Defining life: the virus viewpoint,” Origins of Life and Evolution of Biospheres, vol. 40, no. 2, pp. 151–160, 2010. View at Publisher · View at Google Scholar · View at Scopus
  131. B. La Scola, C. Desnues, I. Pagnier et al., “The virophage as a unique parasite of the giant mimivirus,” Nature, vol. 455, no. 7209, pp. 100–104, 2008. View at Publisher · View at Google Scholar · View at Scopus
  132. E. W. Six and C. A. C. Klug, “Bacteriophage P4: a satellite virus depending on a helper such as prophage P2,” Virology, vol. 51, no. 2, pp. 327–344, 1973. View at Google Scholar · View at Scopus
  133. S. Yau, F. M. Lauro, M. Z. DeMaere et al., “Virophage control of antarctic algal host-virus dynamics,” Proceedings of the National Academy of Sciences of the United States of America, vol. 108, no. 15, pp. 6163–6168, 2011. View at Publisher · View at Google Scholar · View at Scopus
  134. P. E. Turner and S. Duffy, “Evolutionary ecology of multi-phage infections,” in Bacteriophage Ecology, S. T. Abedon, Ed., pp. 195–216, Cambridge University Press, Cambridge, UK, 2008. View at Google Scholar
  135. G. Deho and D. Ghisotti, “The satellite phage P4,” in The Bacteriophages, R. Calendar and S. T. Abedon, Eds., pp. 391–408, Oxford University Press, New York, NY, USA, 2006. View at Google Scholar
  136. S. Inouye, M. G. Sunshine, E. W. Six, and M. Inouye, “Retronphage ΦR73: an E. coli phage that contains a retroelement and integrates into a tRNA gene,” Science, vol. 252, no. 5008, pp. 969–971, 1991. View at Google Scholar · View at Scopus
  137. J. Sun, M. Inouye, and S. Inouye, “Association of a retroelement with a P4-like cryptic prophage (retronphage phiR73) integrated into the selenocystyl tRNA gene of Escherichia coli,” Journal of Bacteriology, vol. 173, no. 13, pp. 4171–4181, 1991. View at Google Scholar · View at Scopus
  138. H. P. Arnold, Q. She, H. Phan et al., “The genetic element pSSVx of the extremely thermophilic crenarchaeon Sulfolobus is a hybrid between a plasmid and a virus,” Molecular Microbiology, vol. 34, no. 2, pp. 217–226, 1999. View at Publisher · View at Google Scholar · View at Scopus
  139. C. Desnues and D. Raoult, “Inside the lifestyle of the virophage,” Intervirology, vol. 53, no. 5, pp. 293–303, 2010. View at Publisher · View at Google Scholar · View at Scopus
  140. M. G. Fischer and C. A. Suttle, “A virophage at the origin of large DNA transposons,” Science, vol. 332, no. 6026, pp. 231–234, 2011. View at Publisher · View at Google Scholar · View at Scopus
  141. K. Nagasaki, K. Tarutani, and M. Yamaguchi, “Growth characteristics of Heterosigma akashiwo virus and its possible use as a microbiological agent for red tide control,” Applied and Environmental Microbiology, vol. 65, no. 3, pp. 898–902, 1999. View at Google Scholar · View at Scopus
  142. S. T. Abedon, “Impact of phage properties on bacterial survival,” in Contemporary Trends in Bacteriophage Research, H. T. Adams, Ed., pp. 217–235, Nova Science Publishers, Hauppauge, NY, USA, 2009. View at Google Scholar
  143. S. T. Abedon, “Kinetics of phage-mediated biocontrol of bacteria,” Foodborne Pathogens and Disease, vol. 6, no. 7, pp. 807–815, 2009. View at Publisher · View at Google Scholar · View at Scopus
  144. S. T. Abedon and C. Thomas-Abedon, “Phage therapy pharmacology,” Current Pharmaceutical Biotechnology, vol. 11, no. 1, pp. 28–47, 2010. View at Publisher · View at Google Scholar · View at Scopus
  145. E. Kutter, D. De Vos, G. Gvasalia et al., “Phage therapy in clinical practice: treatment of human infections,” Current Pharmaceutical Biotechnology, vol. 11, no. 1, pp. 69–86, 2010. View at Publisher · View at Google Scholar · View at Scopus
  146. C. Loc-Carrillo and S. T. Abedon, “Pros and cons of phage therapy,” Bacteriophage, vol. 1, pp. 111–114, 2011. View at Publisher · View at Google Scholar
  147. A. J. Curtright and S. T. Abedon, “Phage therapy: emergent property pharmacology,” Journal of Bioanalysis & Biomedicine, vol. S6, article 002, 2011. View at Google Scholar
  148. J. J. Gill and P. Hyman, “Phage choice, isolation, and preparation for phage therapy,” Current Pharmaceutical Biotechnology, vol. 11, no. 1, pp. 2–14, 2010. View at Publisher · View at Google Scholar · View at Scopus
  149. S. T. Abedon, “Bacteriophages and biofilms,” in Biofilms: Formation, Development and Properties, W. C. Bailey, Ed., pp. 1–58, Nova Science Publishers, Hauppauge, NY, USA, 2010. View at Google Scholar
  150. S. T. Abedon, Bacteriophages and Biofilms: Ecology, Phage Therapy, Plaques, Nova Science Publishers, Hauppauge, NY, USA, 2011.
  151. J. H. Landsberg, “The effects of harmful algal blooms on aquatic organisms,” Reviews in Fisheries Science, vol. 10, no. 2, pp. 113–390, 2002. View at Publisher · View at Google Scholar · View at Scopus
  152. K. Tarutani, K. Nagasaki, and M. Yamaguchi, “Viral impacts on total abundance and clonal composition of the harmful bloom-forming phytoplankton: Heterosigma akashiwo,” Applied and Environmental Microbiology, vol. 66, no. 11, pp. 4916–4920, 2000. View at Publisher · View at Google Scholar · View at Scopus
  153. M. G. Weinbauer, M. Agis, O. Bonilla-Findji, A. Malits, and C. Winter, “Bacteriophage in the environment,” in Bacteriophage: Genetics and Molecular Biology, S. McGrath and D. van Sinderen, Eds., pp. 61–92, Caister Academic Press, Norfolk, UK, 2007. View at Google Scholar
  154. M. L. Pedulla, M. E. Ford, J. M. Houtz et al., “Origins of highly mosaic mycobacteriophage genomes,” Cell, vol. 113, no. 2, pp. 171–182, 2003. View at Publisher · View at Google Scholar · View at Scopus
  155. P. G. Cantalupo, B. Calgua, G. Zhao et al., “Raw sewage harbors diverse viral populations,” mBio, vol. 2, no. 5, Article ID e00180-11, 2011. View at Google Scholar
  156. H. W. Ackermann and D. Prangishvili, “Prokaryote viruses studied by electron microscopy,” Archives of Virology. In press.
  157. G. Cohen, L. Hoffart, B. La Scola, D. Raoult, and M. Drancourt, “Ameba-associated Keratitis, France,” Emerging Infectious Disease, vol. 17, no. 7, 2011. View at Google Scholar