Table of Contents Author Guidelines Submit a Manuscript
Erratum

An erratum for this article has been published. To view the erratum, please click here.

Scientifica
Volume 2013, Article ID 738257, 26 pages
http://dx.doi.org/10.1155/2013/738257
Review Article

Hox Targets and Cellular Functions

Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Nicolás Cabrera 1, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain

Received 10 October 2013; Accepted 20 November 2013

Academic Editors: D. Ferrier and C. Minguillon

Copyright © 2013 Ernesto Sánchez-Herrero. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. W. McGinnis and R. Krumlauf, “Homeobox genes and axial patterning,” Cell, vol. 68, no. 2, pp. 283–302, 1992. View at Publisher · View at Google Scholar · View at Scopus
  2. S. B. Carroll, “Homeotic genes and the evolution of arthropods and chordates,” Nature, vol. 376, no. 6540, pp. 479–485, 1995. View at Google Scholar · View at Scopus
  3. E. B. Lewis, “A gene complex controlling segmentation in Drosophila,” Nature, vol. 276, no. 5688, pp. 565–570, 1978. View at Google Scholar · View at Scopus
  4. J. Garcia-Fernández, “The genesis and evolution of homeobox gene clusters,” Nature Reviews Genetics, vol. 6, pp. 881–892, 2005. View at Google Scholar
  5. D. Duboule, “The rise and fall of Hox gene clusters,” Development, vol. 134, no. 14, pp. 2549–2560, 2007. View at Publisher · View at Google Scholar · View at Scopus
  6. E. Sánchez-Herrero, I. Vernós, R. Marco, and G. Morata, “Genetic organization of Drosophila bithorax complex,” Nature, vol. 313, no. 5998, pp. 108–113, 1985. View at Google Scholar · View at Scopus
  7. S. Tiong, L. M. Bone, and J. R. S. Whittle, “Recessive lethal mutations within the bithorax-complex in Drosophila,” MGG Molecular & General Genetics, vol. 200, no. 2, pp. 335–342, 1985. View at Publisher · View at Google Scholar · View at Scopus
  8. R. K. Maeda and F. Karch, “The ABC of the BX-C: the bithorax complex explained,” Development, vol. 133, no. 8, pp. 1413–1422, 2006. View at Publisher · View at Google Scholar · View at Scopus
  9. T. C. Kaufman, R. Lewis, and B. Wakimoto, “Cytogenetic analysis of chromosome 3 in Drosophila melanogaster: the homoeotic gene complex in polytene chromosome interval 84A-B,” Genetics, vol. 94, no. 1, pp. 115–133, 1980. View at Google Scholar · View at Scopus
  10. T. C. Kaufman, M. A. Seeger, and G. Olsen, “Molecular and genetic organization of the antennapedia gene complex of Drosophila melanogaster,” Advances in Genetics, vol. 27, pp. 309–362, 1990. View at Publisher · View at Google Scholar · View at Scopus
  11. D. Duboule and P. Dollé, “The structural and functional organization of the murine HOX gene family resembles that of Drosophila homeotic genes,” EMBO Journal, vol. 8, no. 5, pp. 1497–1505, 1989. View at Google Scholar · View at Scopus
  12. A. Graham, N. Papalopulu, and R. Krumlauf, “The murine and Drosophila homeobox gene complexes have common features of organization and expression,” Cell, vol. 57, no. 3, pp. 367–378, 1989. View at Google Scholar · View at Scopus
  13. M. Maconochie, S. Nonchev, A. Morrison, and R. Krumlauf, “Paralogous Hox genes: function and regulation,” Annual Review of Genetics, vol. 30, pp. 529–556, 1996. View at Publisher · View at Google Scholar · View at Scopus
  14. D. Lemons and W. McGinnis, “Genomic evolution of hox gene clusters,” Science, vol. 313, no. 5795, pp. 1918–1922, 2006. View at Publisher · View at Google Scholar · View at Scopus
  15. M. Mallo, T. Vinagre, and M. Carapuço, “The road to the vertebral formula,” International Journal of Developmental Biology, vol. 53, no. 8-10, pp. 1469–1481, 2009. View at Publisher · View at Google Scholar · View at Scopus
  16. M. Mallo, D. M. Wellik, and J. Deschamps, “Hox genes and regional patterning of the vertebrate body plan,” Developmental Biology, vol. 344, no. 1, pp. 7–15, 2010. View at Publisher · View at Google Scholar · View at Scopus
  17. M. Kmita and D. Duboule, “Organizing axes in time and space; 25 years of colinear tinkering,” Science, vol. 301, no. 5631, pp. 331–333, 2003. View at Publisher · View at Google Scholar · View at Scopus
  18. T. Iimura, N. Denans, and O. Pourquié, “Establishment of Hox vertebral identities in the embryonic spine precursors,” Current Topics in Developmental Biology, vol. 88, pp. 201–234, 2009. View at Publisher · View at Google Scholar · View at Scopus
  19. N. Soshnikova and D. Duboule, “Epigenetic regulation of Hox gene activation: the waltz of methyls,” BioEssays, vol. 30, no. 3, pp. 199–202, 2008. View at Publisher · View at Google Scholar · View at Scopus
  20. S. C. Ekker, D. G. Jackson, D. P. von Kassler, B. I. Sun, K. E. Young, and P. A. Beachy, “The degree of variation in DNA sequence recognition among four Drosophila homeotic proteins,” EMBO Journal, vol. 13, no. 15, pp. 3551–3560, 1994. View at Google Scholar · View at Scopus
  21. M. B. Noyes, R. G. Christensen, A. Wakabayashi, G. D. Stormo, M. H. Brodsky, and S. A. Wolfe, “Analysis of homeodomain specificities allows the family-wide prediction of preferred recognition sites,” Cell, vol. 133, no. 7, pp. 1277–1289, 2008. View at Publisher · View at Google Scholar · View at Scopus
  22. M. F. Berger, G. Badis, A. R. Gehrke et al., “Variation in homeodomain DNA binding revealed by high-resolution analysis of sequence preferences,” Cell, vol. 133, no. 7, pp. 1266–1276, 2008. View at Publisher · View at Google Scholar · View at Scopus
  23. R. S. Mann, K. M. Lelli, and R. Joshi, “Hox specificity: unique roles for cofactors and collaborators,” Current Topics in Developmental Biology, vol. 88, pp. 63–101, 2009. View at Publisher · View at Google Scholar · View at Scopus
  24. R. S. Mann and S.-K. Chan, “Extra specificity from extradenticle: the partnership between HOX and PBX/EXD homeodomain proteins,” Trends in Genetics, vol. 12, no. 8, pp. 258–262, 1996. View at Publisher · View at Google Scholar · View at Scopus
  25. C. B. Moens and L. Selleri, “Hox cofactors in vertebrate development,” Developmental Biology, vol. 291, no. 2, pp. 193–206, 2006. View at Publisher · View at Google Scholar · View at Scopus
  26. R. Joshi, J. M. Passner, R. Rohs et al., “Functional specificity of a Hox protein mediated by the recognition of minor groove structure,” Cell, vol. 131, no. 3, pp. 530–543, 2007. View at Publisher · View at Google Scholar · View at Scopus
  27. M. Slattery, T. Riley, P. Liu et al., “Cofactor binding evokes latent differences in DNA binding specificity between hox proteins,” Cell, vol. 147, no. 6, pp. 1270–1282, 2011. View at Publisher · View at Google Scholar · View at Scopus
  28. C. B. Bridges and T. H. Morgan, “The third-chromosome group of mutant characters of Drosophila melanogaster,” Carnegie Institution for Science, vol. 327, pp. 1–251, 1923. View at Google Scholar
  29. J. Le Calvez, “'Aristapedia' heterozygote dominante homozygote lethale chez Drosophila melanogaster. Inversion dans le bras droit du chromosome III,” Bulletin Biologique de la France et de la Belgique, vol. 82, pp. 97–113, 1948. View at Google Scholar
  30. E. B. Lewis, “Genes & Developmental pathways,” American Zoologist, vol. 3, pp. 33–56, 1963. View at Google Scholar
  31. W. Bateson, Materials for the Study of Variation, Treated with Especial Regard to Discontinuity in the Origin of Species, Macmillan, London, UK, 1894.
  32. R. E. Denell, “Homoeosis in Drosophila. I. Complementation studies with revertants of nasobemia,” Genetics, vol. 75, no. 2, pp. 279–297, 1973. View at Google Scholar · View at Scopus
  33. G. Struhl, “A homoeotic mutation transforming leg to antenna in Drosophila,” Nature, vol. 292, no. 5824, pp. 635–638, 1981. View at Google Scholar · View at Scopus
  34. S. Schneuwly, A. Kuroiwa, and W. J. Gehring, “Molecular analysis of the dominant homeotic Antennapedia phenotype,” EMBO Journal, vol. 6, pp. 201–206, 1987. View at Google Scholar
  35. H. Le Mouellic, Y. Lallemand, and P. Brulet, “Homeosis in the mouse induced by a null mutation in the Hox-3.1 gene,” Cell, vol. 69, no. 2, pp. 251–264, 1992. View at Publisher · View at Google Scholar · View at Scopus
  36. G. S. B. Horan, K. Wu, D. J. Wolgemuth, and R. R. Behringer, “Homeotic transformation of cervical vertebrae in Hoxa-4 mutant mice,” Proceedings of the National Academy of Sciences of the United States of America, vol. 91, no. 26, pp. 12644–12648, 1994. View at Publisher · View at Google Scholar · View at Scopus
  37. D. M. Wellik, “Hox genes and vertebrate axial pattern,” Current Topics in Developmental Biology, vol. 88, pp. 257–278, 2009. View at Publisher · View at Google Scholar · View at Scopus
  38. D. M. Wellik and M. R. Capecchi, “Hox10 and Hox11 genes are required to globally pattern the mammalian skeleton,” Science, vol. 301, no. 5631, pp. 363–367, 2003. View at Publisher · View at Google Scholar · View at Scopus
  39. D. C. McIntyre, S. Rakshit, A. R. Yallowitz et al., “Hox patterning of the vertebrate rib cage,” Development, vol. 134, no. 16, pp. 2981–2989, 2007. View at Publisher · View at Google Scholar · View at Scopus
  40. A. García-Bellido, “Genetic control of wing disc development in Drosophila,” in Proceedings of the “Cell Patterning”, CIBA Foundation Symposium, vol. 29, pp. 161–182, ASP, Amsterdam, The Netherlands, 1975.
  41. Y. Graba, D. Aragnol, and J. Pradel, “Drosophila Hox complex downstream targets and the function of homeotic genes,” BioEssays, vol. 19, no. 5, pp. 379–388, 1997. View at Google Scholar · View at Scopus
  42. J. Pradel and R. A. H. White, “From selectors to realizators,” International Journal of Developmental Biology, vol. 42, no. 3, pp. 417–421, 1998. View at Google Scholar · View at Scopus
  43. J. Castelli-Gair Hombría and B. Lovegrove, “Beyond homeosis—HOX function in morphogenesis and organogenesis,” Differentiation, vol. 71, no. 8, pp. 461–476, 2003. View at Publisher · View at Google Scholar · View at Scopus
  44. J. C. Pearson, D. Lemons, and W. McGinnis, “Modulating Hox gene functions during animal body patterning,” Nature Reviews Genetics, vol. 6, no. 12, pp. 893–904, 2005. View at Publisher · View at Google Scholar · View at Scopus
  45. Z. N. Akin and A. J. Nazarali, “Hox genes and their candidate downstream targets in the developing central nervous system,” Cellular and Molecular Neurobiology, vol. 25, no. 3-4, pp. 697–741, 2005. View at Publisher · View at Google Scholar · View at Scopus
  46. T. Svingen and K. F. Tonissen, “Hox transcription factors and their elusive mammalian gene targets,” Heredity, vol. 97, no. 2, pp. 88–96, 2006. View at Publisher · View at Google Scholar · View at Scopus
  47. S. D. Hueber and I. Lohmann, “Shaping segments: Hox gene function in the genomic age,” BioEssays, vol. 30, no. 10, pp. 965–979, 2008. View at Publisher · View at Google Scholar · View at Scopus
  48. D. Foronda, L. F. de Navas, D. L. Garaulet, and E. Sánchez-Herrero, “Function and specificity of Hox genes,” International Journal of Developmental Biology, vol. 53, no. 8–10, pp. 1409–1419, 2009. View at Publisher · View at Google Scholar · View at Scopus
  49. S. W. Choo and S. Russell, “Genomic approaches to understanding Hox gene function,” Advances in Genetics, vol. 76, pp. 55–91, 2011. View at Publisher · View at Google Scholar · View at Scopus
  50. J. G. Heuer, K. Li, and T. C. Kaufman, “The Drosophila homeotic target gene centrosomin (cnn) encodes a novel centrosomal protein with leucine zippers and maps to a genomic region required for midgut morphogenesis,” Development, vol. 121, no. 11, pp. 3861–3876, 1995. View at Google Scholar · View at Scopus
  51. A. P. Gould and R. A. H. White, “Connectin, a target of homeotic gene control in Drosophila,” Development, vol. 116, no. 4, pp. 1163–1174, 1992. View at Google Scholar · View at Scopus
  52. Y. Zhao and S. S. Potter, “Functional specificity of the Hoxa13 homeobox,” Development, vol. 128, no. 16, pp. 3197–3207, 2001. View at Google Scholar · View at Scopus
  53. R. Leemans, T. Loop, B. Egger et al., “Identification of candidate downstream genes for the homeodomain transcription factor Labial in Drosophila through oligonucleotide-array transcript imaging,” Genome Biology, vol. 2, no. 5, pp. 1–9, 2001. View at Google Scholar · View at Scopus
  54. A. Klebes, B. Biehs, F. Cifuentes, and T. B. Kornberg, “Expression profiling of Drosophila imaginal discs,” Genome Biology, vol. 3, no. 8, pp. 1–16, 2002. View at Google Scholar · View at Scopus
  55. M. T. Valerius, L. T. Patterson, Y. Feng, and S. S. Potter, “Hoxa 11 is upstream of integrin α8 expression in the developing kidney,” Proceedings of the National Academy of Sciences of the United States of America, vol. 99, no. 12, pp. 8090–8095, 2002. View at Publisher · View at Google Scholar · View at Scopus
  56. E. Hedlund, S. L. Karsten, L. Kudo, D. H. Geschwind, and E. M. Carpenter, “Identification of a Hoxd10-regulated transcriptional network and combinatorial interactions with Hoxa10 during spinal cord development,” Journal of Neuroscience Research, vol. 75, no. 3, pp. 307–319, 2004. View at Publisher · View at Google Scholar · View at Scopus
  57. H. Lei, H. Wang, A. H. Juan, and F. H. Ruddle, “The identification of Hoxc8 target genes,” Proceedings of the National Academy of Sciences of the United States of America, vol. 102, no. 7, pp. 2420–2424, 2005. View at Publisher · View at Google Scholar · View at Scopus
  58. T. M. Williams, M. E. Williams, R. Kuick et al., “Candidate downstream regulated genes of HOX group 13 transcription factors with and without monomeric DNA binding capability,” Developmental Biology, vol. 279, no. 2, pp. 462–480, 2005. View at Publisher · View at Google Scholar · View at Scopus
  59. J. Cobb and D. Duboule, “Comparative analysis of genes downstream of the Hoxd cluster in developing digits and external genitalia,” Development, vol. 132, no. 13, pp. 3055–3067, 2005. View at Publisher · View at Google Scholar · View at Scopus
  60. E. Martinez-Ceballos, P. Chambon, and L. J. Gudas, “Differences in gene expression between wild type and Hoxa1 knockout embryonic stem cells after retinoic acid treatment or leukemia inhibitory factor (LIF) removal,” The Journal of Biological Chemistry, vol. 280, no. 16, pp. 16484–16498, 2005. View at Publisher · View at Google Scholar · View at Scopus
  61. O. Barmina, M. Gonzalo, L. M. McIntyre, and A. Kopp, “Sex- and segment-specific modulation of gene expression profiles in Drosophila,” Developmental Biology, vol. 288, no. 2, pp. 528–544, 2005. View at Publisher · View at Google Scholar · View at Scopus
  62. C. M. Ferrell, S. T. Dorsam, H. Ohta et al., “Activation of stem-cell specific genes by HOXA9 and HOXA10 homeodomain proteins in CD34+ human cord blood cells,” Stem Cells, vol. 23, no. 5, pp. 644–655, 2005. View at Publisher · View at Google Scholar · View at Scopus
  63. K. Schwab, H. A. Hartman, H.-C. Liang, B. J. Aronow, L. T. Patterson, and S. S. Potter, “Comprehensive microarray analysis of Hoxa11/Hoxd11 mutant kidney development,” Developmental Biology, vol. 293, no. 2, pp. 540–554, 2006. View at Publisher · View at Google Scholar · View at Scopus
  64. P. Mohit, K. Makhijani, M. B. Madhavi et al., “Modulation of AP and DV signaling pathways by the homeotic gene Ultrabithorax during haltere development in Drosophila,” Developmental Biology, vol. 291, no. 2, pp. 356–367, 2006. View at Publisher · View at Google Scholar · View at Scopus
  65. P. Tvrdik and M. R. Capecchi, “Reversal of Hox1 gene subfunctionalization in the mouse,” Developmental Cell, vol. 11, no. 2, pp. 239–250, 2006. View at Publisher · View at Google Scholar · View at Scopus
  66. B. M. Hersh, C. E. Nelson, S. J. Stoll, J. E. Norton, T. J. Albert, and S. B. Carroll, “The UBX-regulated network in the haltere imaginal disc of D. melanogaster,” Developmental Biology, vol. 302, no. 2, pp. 717–727, 2007. View at Publisher · View at Google Scholar · View at Scopus
  67. S. D. Hueber, D. Bezdan, S. R. Henz, M. Blank, H. Wu, and I. Lohmann, “Comparative analysis of Hox downstream genes in Drosophila,” Development, vol. 134, no. 2, pp. 381–392, 2007. View at Publisher · View at Google Scholar · View at Scopus
  68. M. R. Rohrschneider, G. E. Elsen, and V. E. Prince, “Zebrafish Hoxb1a regulates multiple downstream genes including prickle1b,” Developmental Biology, vol. 309, no. 2, pp. 358–372, 2007. View at Publisher · View at Google Scholar · View at Scopus
  69. D. Chambers, L. J. Wilson, F. Alfonsi et al., “Rhombomere-specific analysis reveals the repertoire of genetic cues expressed across the developing hindbrain,” Neural Development, vol. 4, no. 1, article 6, 2009. View at Publisher · View at Google Scholar · View at Scopus
  70. W. M. R. van den Akker, A. J. Durston, and H. P. Spaink, “Identification of hoxb1b downstream genes: hoxb1b as a regulatory factor controlling transcriptional networks and cell movement during zebrafish gastrulation,” International Journal of Developmental Biology, vol. 54, no. 1, pp. 55–62, 2010. View at Publisher · View at Google Scholar · View at Scopus
  71. C. S. Potter, N. D. Pruett, M. J. Kern et al., “The nude mutant gene Foxn1 Is a HOXC13 regulatory target during hair follicle and nail differentiation,” Journal of Investigative Dermatology, vol. 131, no. 4, pp. 828–837, 2011. View at Publisher · View at Google Scholar · View at Scopus
  72. N. Makki and M. R. Capecchi, “Identification of novel Hoxa1 downstream targets regulating hindbrain, neural crest and inner ear development,” Developmental Biology, vol. 357, no. 2, pp. 295–304, 2011. View at Publisher · View at Google Scholar · View at Scopus
  73. A. Pavlopoulos and M. Akam, “Hox gene Ultrabithorax regulates distinct sets of target genes at successive stages of Drosophila haltere morphogenesis,” Proceedings of the National Academy of Sciences of the United States of America, vol. 108, no. 7, pp. 2855–2860, 2011. View at Publisher · View at Google Scholar · View at Scopus
  74. C. D. McCabe and J. W. Innis, “A genomic approach to the identification and characterization of HOXA13 functional binding elements,” Nucleic Acids Research, vol. 33, no. 21, pp. 6782–6794, 2005. View at Publisher · View at Google Scholar · View at Scopus
  75. V. Salsi, M. A. Vigano, F. Cocchiarella, R. Mantovani, and V. Zappavigna, “Hoxd13 binds in vivo and regulates the expression of genes acting in key pathways for early limb and skeletal patterning,” Developmental Biology, vol. 317, no. 2, pp. 497–507, 2008. View at Publisher · View at Google Scholar · View at Scopus
  76. S. W. Choo, R. White, and S. Russell, “Genome-wide analysis of the binding of the hox protein Ultrabithorax and the hox cofactor homothorax in Drosophila,” PLoS ONE, vol. 6, no. 4, Article ID e14778, 2011. View at Publisher · View at Google Scholar · View at Scopus
  77. M. Slattery, L. Ma, N. Négre, K. P. White, and R. S. Mann, “Genome-wide tissue-specific occupancy of the hox protein Ultrabithorax and hox cofactor homothorax in Drosophila,” PLoS ONE, vol. 6, no. 4, Article ID e14686, 2011. View at Publisher · View at Google Scholar · View at Scopus
  78. P. Agrawal, F. Habib, R. Yelagandula, and L. S. Shashidhara, “Genome-level identification of targets of Hox protein Ultrabithorax in Drosophila: novel mechanisms for target selection,” Scientific Reports, vol. 1, article 205, 2011. View at Publisher · View at Google Scholar · View at Scopus
  79. S. Sorge, N. Ha, M. Polychronidou et al., “The cis-regulatory code of Hox function in Drosophila,” EMBO Journal, vol. 31, pp. 3323–3333, 2012. View at Google Scholar
  80. I. J. Donaldson, S. Amin, J. J. Hensman et al., “Genome-wide occupancy links Hoxa2 to Wnt-β-catenin signaling in mouse embryonic development,” Nucleic Acids Research, vol. 40, pp. 3990–4001, 2012. View at Publisher · View at Google Scholar
  81. R. J. Diederich, V. K. Merrill, M. A. Pultz, and T. C. Kaufman, “Isolation, structure, and expression of labial, a homeotic gene of the Antennapedia Complex involved in Drosophila head development,” Genes & Development, vol. 3, no. 3, pp. 399–414, 1989. View at Google Scholar · View at Scopus
  82. M. Mlodzik, A. Fjose, and W. J. Gehring, “Molecular structure and spatial expression of a homeobox gene from the labial region of the Antennapedia-complex,” EMBO Journal, vol. 7, no. 8, pp. 2569–2578, 1988. View at Google Scholar · View at Scopus
  83. V. K. L. Merrill, R. J. Diederich, F. R. Turner, and T. C. Kaufman, “A genetic and developmental analysis of mutations in labial, a gene necessary for proper head formation in Drosophila melanogaster,” Developmental Biology, vol. 135, no. 2, pp. 376–391, 1989. View at Google Scholar · View at Scopus
  84. R. A. Lewis, T. C. Kaufman, R. E. Denell, and P. Tallerico, “Genetic analysis of the antennnapedia gene complex (ant-C) and adjacent chromosomal regions of Drosophila melanogaster. I. Polytene chromosome segments 84B-D,” Genetics, vol. 95, no. 2, pp. 367–381, 1980. View at Google Scholar · View at Scopus
  85. G. Struhl, “Genes controlling segmental specification in the Drosophila thorax,” Proceedings of the National Academy of Sciences of the United States of America, vol. 79, no. 23 I, pp. 7380–7384, 1982. View at Google Scholar · View at Scopus
  86. R. A. H. White and M. Wilcox, “Distribution of Ultrabithorax proteins in Drosophila,” EMBO Journal, vol. 4, pp. 2035–2043, 1985. View at Google Scholar · View at Scopus
  87. P. A. Beachy, S. L. Helfand, and D. S. Hogness, “Segmental distribution of bithorax complex proteins during Drosophila development,” Nature, vol. 313, no. 6003, pp. 545–551, 1985. View at Google Scholar · View at Scopus
  88. G. Morata and A. Garcia Bellido, “Developmental analysis of some mutants of the bithorax system of Drosophila,” Wilhelm Roux's Archives of Developmental Biology, vol. 179, no. 2, pp. 125–143, 1976. View at Google Scholar · View at Scopus
  89. S. E. McGuire, P. T. Le, A. J. Osborn, K. Matsumoto, and R. L. Davis, “Spatiotemporal rescue of memory dysfunction in Drosophila,” Science, vol. 302, no. 5651, pp. 1785–1788, 2003. View at Publisher · View at Google Scholar · View at Scopus
  90. T. Alexander, C. Nolte, and R. Krumlauf, “Hox genes and segmentation of the hindbrain and axial skeleton,” Annual Review of Cell and Developmental Biology, vol. 25, pp. 431–456, 2009. View at Publisher · View at Google Scholar · View at Scopus
  91. S. D. Weatherbee, G. Halder, J. Kim, A. Hudson, and S. Carroll, “Ultrabithorax regulates genes at several levels of the wing-patterning hierarchy to shape the development of the Drosophila haltere,” Genes & Development, vol. 12, no. 10, pp. 1474–1482, 1998. View at Google Scholar · View at Scopus
  92. L. S. Shashidhara, N. Agrawal, R. Bajpai, V. Bharathi, and P. Sinha, “Negative regulation of dorsoventral signaling by the homeotic gene Ultrabithorax during haltere development in Drosophila,” Developmental Biology, vol. 212, no. 2, pp. 491–502, 1999. View at Publisher · View at Google Scholar · View at Scopus
  93. R. Galant, C. M. Walsh, and S. B. Carroll, “Hox repression of a target gene: extradenticle-independent, additive action through multiple monomer binding sites,” Development, vol. 129, no. 13, pp. 3115–3126, 2002. View at Google Scholar · View at Scopus
  94. P. Mohit, R. Bajpai, and L. S. Shashidhara, “Regulation of wingless and Vestigial expression in wing and haltere discs of Drosophila,” Development, vol. 130, no. 8, pp. 1537–1547, 2003. View at Publisher · View at Google Scholar · View at Scopus
  95. R. Bajpai, N. Sambrani, B. Stadelmayer, and L. S. Shashidhara, “Identification of a novel target of D/V signaling in Drosophila wing disc: Wg-independent function of the organizer,” Gene Expression Patterns, vol. 5, no. 1, pp. 113–121, 2004. View at Publisher · View at Google Scholar · View at Scopus
  96. B. M. Hersh and S. B. Carroll, “Direct regulation of knot gene expression by Ultrabithorax and the evolution of cis-regulatory elements in Drosophila,” Development, vol. 132, no. 7, pp. 1567–1577, 2005. View at Publisher · View at Google Scholar · View at Scopus
  97. M. A. Crickmore and R. S. Mann, “Hox control of organ size by regulation of morphogen production and mobility,” Science, vol. 313, no. 5783, pp. 63–68, 2006. View at Publisher · View at Google Scholar · View at Scopus
  98. L. F. de Navas, D. L. Garaulet, and E. Sánchez-Herrero, “The Ultrabithorax Hox gene of Drosophila controls haltere size by regulating the Dpp pathway,” Development, vol. 133, no. 22, pp. 4495–4506, 2006. View at Publisher · View at Google Scholar · View at Scopus
  99. S. K. Pallavi, R. Kannan, and L. S. Shashidhara, “Negative regulation of Egfr/Ras pathway by Ultrabithorax during haltere development in Drosophila,” Developmental Biology, vol. 296, no. 2, pp. 340–352, 2006. View at Publisher · View at Google Scholar · View at Scopus
  100. M. A. Crickmore and R. S. Mann, “Hox control of morphogen mobility and organ development through regulation of glypican expression,” Development, vol. 134, no. 2, pp. 327–334, 2007. View at Publisher · View at Google Scholar · View at Scopus
  101. K. Makhijani, C. Kalyani, T. Srividya, and L. S. Shashidhara, “Modulation of Decapentaplegic gradient during haltere specification in Drosophila,” Developmental Biology, vol. 302, no. 1, pp. 243–255, 2007. View at Publisher · View at Google Scholar · View at Scopus
  102. C. M. Walsh and S. B. Carroll, “Collaboration between Smads and a Hox protein in target gene repression,” Development, vol. 134, no. 20, pp. 3585–3592, 2007. View at Publisher · View at Google Scholar · View at Scopus
  103. G. Morata and S. Kerridge, “Sequential functions of the bithorax complex of Drosophila,” Nature, vol. 290, no. 5809, pp. 778–781, 1981. View at Publisher · View at Google Scholar · View at Scopus
  104. J. Castelli-Gair and M. Akam, “How the Hox gene Ultrabithorax specifies two different segments: the significance of spatial and temporal regulation within metameres,” Development, vol. 121, no. 9, pp. 2973–2982, 1995. View at Google Scholar · View at Scopus
  105. S. Greig and M. Akam, “The role of homeotic genes in the specification of the Drosophila gonad,” Current Biology, vol. 5, pp. 1057–1062, 1995. View at Google Scholar
  106. F. Casares, M. Calleja, and E. Sénchez-Herrero, “Functional similarity in appendage specification by the Ultrabithorax and abdominal-A Drosophila HOX genes,” EMBO Journal, vol. 15, no. 15, pp. 3934–3942, 1996. View at Google Scholar · View at Scopus
  107. F. Hirth, T. Loop, B. Egger, D. F. B. Miller, T. C. Kaufman, and H. Reichert, “Functional equivalence of Hox gene products in the specification of the tritocerebrum during embryonic brain development of Drosophila,” Development, vol. 128, no. 23, pp. 4781–4788, 2001. View at Google Scholar · View at Scopus
  108. A. Grienenberger, S. Merabet, J. Manak et al., “Tgfβ signaling acts on a Hox response element to confer specificity and diversity to Hox protein function,” Development, vol. 130, no. 22, pp. 5445–5455, 2003. View at Publisher · View at Google Scholar · View at Scopus
  109. B. Gebelein, D. J. McKay, and R. S. Mann, “Direct integration of Hox and segmentation gene inputs during Drosophila development,” Nature, vol. 431, no. 7009, pp. 653–659, 2004. View at Publisher · View at Google Scholar · View at Scopus
  110. P. Stöbe, M. A. Stein, A. Habring-Müller et al., “Multifactorial regulation of a hox target gene,” PLoS Genetics, vol. 5, Article ID e1000412, 2009. View at Google Scholar
  111. J. C.-G. Hombría, M. L. Rivas, and S. O. L. Sotillos, “Genetic control of morphogenesis—Hox induced organogenesis of the posterior spiracles,” International Journal of Developmental Biology, vol. 53, no. 8–10, pp. 1349–1358, 2009. View at Publisher · View at Google Scholar · View at Scopus
  112. M. Akam, “Hox genes: from master genes to micromanagers,” Current Biology, vol. 8, no. 19, pp. R676–R678, 1998. View at Google Scholar · View at Scopus
  113. Y. Fuchs and H. Steller, “Programmed cell death in animal development and disease,” Cell, vol. 147, no. 4, pp. 742–758, 2011. View at Publisher · View at Google Scholar · View at Scopus
  114. I. Lohmann, N. McGinnis, M. Bodmer, and W. McGinnis, “The Drosophila Hox gene Deformed sculpts head morphology via direct regulation of the apoptosis activator reaper,” Cell, vol. 110, no. 4, pp. 457–466, 2002. View at Publisher · View at Google Scholar · View at Scopus
  115. M. Regulski, N. McGinnis, R. Chadwick, and W. McGinnis, “Developmental and molecular analysis of deformed, a homeotic gene controlling Drosophila head development,” EMBO Journal, vol. 6, pp. 767–777, 1987. View at Google Scholar
  116. V. K. L. Merrill, F. R. Turner, and T. C. Kaufman, “A genetic and developmental analysis of mutations in the Deformed locus in Drosophila melanogaster,” Developmental Biology, vol. 122, no. 2, pp. 379–395, 1987. View at Google Scholar · View at Scopus
  117. Z. Zhai, A. L. Fuchs, and I. Lohmann, “Cellular analysis of newly identified Hox downstream genes in Drosophila,” European Journal of Cell Biology, vol. 89, no. 2-3, pp. 273–278, 2010. View at Publisher · View at Google Scholar · View at Scopus
  118. G. M. Technau, C. Berger, and R. Urbach, “Generation of cell diversity and segmental pattern in the embryonic central nervous system of Drosophila,” Developmental Dynamics, vol. 235, no. 4, pp. 861–869, 2006. View at Publisher · View at Google Scholar · View at Scopus
  119. S. Lin and T. Lee, “Generating neuronal diversity in the Drosophila central nervous system,” Developmental Dynamics, vol. 241, no. 1, pp. 57–68, 2012. View at Publisher · View at Google Scholar · View at Scopus
  120. C. Maurange and A. P. Gould, “Brainy but not too brainy: starting and stopping neuroblast divisions in Drosophila,” Trends in Neurosciences, vol. 28, no. 1, pp. 30–36, 2005. View at Publisher · View at Google Scholar · View at Scopus
  121. B. C. Bello, F. Hirth, and A. P. Gould, “A pulse of the Drosophila Hox protein abdominal-A schedules the end of neural proliferation via neuroblast apoptosis,” Neuron, vol. 37, no. 2, pp. 209–219, 2003. View at Publisher · View at Google Scholar · View at Scopus
  122. C. Cenci and A. P. Gould, “Drosophila Grainyhead specifies late programmes of neural proliferation by regulating the mitotic activity and Hox-dependent apoptosis of neuroblasts,” Development, vol. 132, no. 17, pp. 3835–3845, 2005. View at Publisher · View at Google Scholar · View at Scopus
  123. C. Maurange, L. Cheng, and A. P. Gould, “Temporal transcription factors and their targets schedule the end of neural proliferation in Drosophila,” Cell, vol. 133, no. 5, pp. 891–902, 2008. View at Publisher · View at Google Scholar · View at Scopus
  124. I. Miguel-Aliaga and S. Thor, “Segment-specific prevention of pioneer neuron apoptosis by cell-autonomous, postmitotic Hox gene activity,” Development, vol. 131, no. 24, pp. 6093–6105, 2004. View at Publisher · View at Google Scholar · View at Scopus
  125. P. A. Kuert, B. C. Bello, and H. Reichert, “The labial gene is required to terminate proliferation of identified neuroblasts in postembryonic development of the Drosophila brain,” Biology Open, vol. 1, pp. 1006–1015, 2012. View at Publisher · View at Google Scholar
  126. A. Suska, I. Miguel-Aliaga, and S. Thor, “Segment-specific generation of Drosophila Capability neuropeptide neurons by multi-faceted Hox cues,” Developmental Biology, vol. 353, no. 1, pp. 72–80, 2011. View at Publisher · View at Google Scholar · View at Scopus
  127. M. A. O'Brien and P. H. Taghert, “A peritracheal neuropeptide system in insects: release of myomodulin-like peptides at ecdysis,” Journal of Experimental Biology, vol. 201, no. 2, pp. 193–209, 1998. View at Google Scholar · View at Scopus
  128. O. Birkholz, O. Vef, A. Rogulja-Ortmann, C. Berger, and G. M. Technau, “Abdominal-B and caudal inhibit the formation of specific neuroblasts in the Drosophila tail region,” Development, vol. 140, pp. 3552–3564, 2013. View at Google Scholar
  129. A. Rogulja-Ortmann, S. Renner, and G. M. Technau, “Antagonistic roles for Ultrabithorax and Antennapedia in regulating segment-specific apoptosis of differentiated motoneurons in the Drosophila embryonic central nervous system,” Development, vol. 135, no. 20, pp. 3435–3445, 2008. View at Publisher · View at Google Scholar · View at Scopus
  130. M. Baek, J. Enriquez, and R. S. Mann, “Dual role for Hox genes and Hox co- factors in conferring leg motoneuron survival and identity in Drosophila,” Development, vol. 140, pp. 2027–2038, 2013. View at Google Scholar
  131. K. D. Economides, L. Zeltser, and M. R. Capecchi, “Hoxb13 mutations cause overgrowth of caudal spinal cordand tail vertebrae,” Developmental Biology, vol. 256, no. 2, pp. 317–330, 2003. View at Publisher · View at Google Scholar · View at Scopus
  132. L. Tiret, H. Le Mouellic, M. Maury, and P. Brûlet, “Increased apoptosis of motoneurons and altered somatotopic maps in the brachial spinal cord of Hoxc-8-deficient mice,” Development, vol. 125, no. 2, pp. 279–291, 1998. View at Google Scholar · View at Scopus
  133. G. O. Gaufo, P. Flodby, and M. R. Capecchi, “Hoxb1 controls effectors of sonic hedgehog and Mash1 signaling pathways,” Development, vol. 127, no. 24, pp. 5343–5354, 2000. View at Google Scholar · View at Scopus
  134. J. A. Montero and J. M. Hurlé, “Sculpting digit shape by cell death,” Apoptosis, vol. 15, pp. 365–375, 2010. View at Google Scholar
  135. H. S. Stadler, K. M. Higgins, and M. R. Capecchi, “Loss of Eph-receptor expression correlates with loss of cell adhesion and chondrogenic capacity in Hoxa13 mutant limbs,” Development, vol. 128, no. 21, pp. 4177–4188, 2001. View at Google Scholar · View at Scopus
  136. W. M. Knosp, V. Scott, H. P. Bächinger, and H. S. Stadler, “HOXA13 regulates the expression of bone morphogenetic proteins 2 and 7 to control distal limb morphogenesis,” Development, vol. 131, no. 18, pp. 4581–4592, 2004. View at Publisher · View at Google Scholar · View at Scopus
  137. S. Shou, H. L. Carlson, W. D. Perez, and H. S. Stadler, “HOXA13 regulates Aldh1a2 expression in the autopod to facilitate interdigital programmed cell death,” Developmental Dynamics, vol. 242, pp. 687–698, 2013. View at Publisher · View at Google Scholar
  138. S. G. Clark, A. D. Chisholm, and H. R. Horvitz, “Control of cell fates in the central body region of C. elegans by the homeobox gene lin-39,” Cell, vol. 74, no. 1, pp. 43–55, 1993. View at Publisher · View at Google Scholar · View at Scopus
  139. J. N. Maloof and C. Kenyon, “The Hox gene lin-39 is required during C. elegans vulval induction to select the outcome of Ras signaling,” Development, vol. 125, no. 2, pp. 181–190, 1998. View at Google Scholar · View at Scopus
  140. M. B. Potts, D. P. Wang, and S. Cameron, “Trithorax, Hox, and TALE-class homeodomain proteins ensure cell survival through repression of the BH3-only gene egl-1,” Developmental Biology, vol. 329, no. 2, pp. 374–385, 2009. View at Publisher · View at Google Scholar · View at Scopus
  141. S. J. Salser, C. M. Loer, and C. Kenyon, “Multiple HOM-C gene interactions specify cell fates in the nematode central nervous system,” Genes & Development, vol. 7, no. 9, pp. 1714–1724, 1993. View at Google Scholar · View at Scopus
  142. H. Liu, T. J. Strauss, M. B. Potts, and S. Cameron, “Direct regulation of egl-1 of programmed cell death by the Hox protein MAB-5 and CEH-20, a C. elegans homolog of Pbx1,” Development, vol. 133, no. 4, pp. 641–650, 2006. View at Publisher · View at Google Scholar · View at Scopus
  143. S. J. Salser and C. Kenyon, “Activation of a C. elegans Antennapedia homologue in migrating cells controls their direction of migration,” Nature, vol. 355, no. 6357, pp. 255–258, 1992. View at Publisher · View at Google Scholar · View at Scopus
  144. J. Harris, L. Honigberg, N. Robinson, and C. Kenyon, “Neuronal cell migration in C. elegans: regulation of Hox gene expression and cell position,” Development, vol. 122, no. 10, pp. 3117–3131, 1996. View at Google Scholar · View at Scopus
  145. B. B. Wang, M. M. Muller-Immergluck, J. Austin, N. T. Robinson, A. Chisholm, and C. Kenyon, “A homeotic gene cluster patterns the anteroposterior body axis of C. elegans,” Cell, vol. 74, no. 1, pp. 29–42, 1993. View at Publisher · View at Google Scholar · View at Scopus
  146. J. V. Tamayo, M. Gujar, S. J. Macdonald, and E. A. Lundquist, “Functional transcriptomic analysis of the role of MAB-5/Hox in Q neuroblast migration in Caenorhabditis elegans,” BMC Genomics, vol. 14, p. 304, 2013. View at Google Scholar
  147. M. Sym, N. Robinson, and C. Kenyon, “MIG-13 positions migrating cells along the anteroposterior body axis of C. elegans,” Cell, vol. 98, no. 1, pp. 25–36, 1999. View at Publisher · View at Google Scholar · View at Scopus
  148. X. Wang, F. Zhou, S. Lv et al., “Transmembrane protein MIG-13 links the Wnt signaling and Hox genes to the cell polarity in neuronal migration,” Proceedings of the National Academy of Sciences of the United States of America, vol. 110, pp. 11175–11180, 2013. View at Google Scholar
  149. A. García-Bellido, “Pattern reconstruction by dissociated imaginal disk cells of Drosophila melanogaster,” Developmental Biology, vol. 4, pp. 278–306, 1966. View at Google Scholar
  150. A. García-Bellido, “Cell affinities in antennal homoeotic mutants of Drosophila melanogaster,” Genetics, vol. 59, no. 4, pp. 487–499, 1968. View at Google Scholar · View at Scopus
  151. A. García-Bellido and E. B. Lewis, “Autonomous cellular differentiation of homoeotic bithorax mutants of Drosophila melanogaster,” Developmental Biology, vol. 48, no. 2, pp. 400–410, 1976. View at Google Scholar · View at Scopus
  152. B. Estrada and E. Sánchez-Herrero, “The Hox gene Abdominal-B antagonizes appendage development in the genital disc of Drosophila,” Development, vol. 128, no. 3, pp. 331–339, 2001. View at Google Scholar · View at Scopus
  153. T. Adachi-Yamada, T. Harumoto, K. Sakurai et al., “Wing-to-leg homeosis by spineless causes apoptosis regulated by fish-lips, a novel leucine-rich repeat transmembrane protein,” Molecular and Cellular Biology, vol. 25, no. 8, pp. 3140–3150, 2005. View at Publisher · View at Google Scholar · View at Scopus
  154. G. Lebreton, C. Faucher, D. L. Cribbs, and C. Benassayag, “Timing of Wingless signalling distinguishes maxillary and antennal identities in Drosophila melanogaster,” Development, vol. 135, no. 13, pp. 2301–2309, 2008. View at Publisher · View at Google Scholar · View at Scopus
  155. P. Gandille, K. Narbonne-Reveau, E. Boissonneau, N. Randsholt, D. Busson, and A.-M. Pret, “Mutations in the Polycombgroup gene polyhomeotic lead to epithelial instability in both the ovary and wing imaginal disc in Drosophila,” PLoS ONE, vol. 5, no. 11, Article ID e13946, 2010. View at Publisher · View at Google Scholar · View at Scopus
  156. J. R. Curt, L. F. de Navas, and E. Sánchez-Herrero, “Differential activity of Hox genes induces myosin expression and can maintain compartment boundaries,” PLoS ONE, vol. 8, Article ID e57159, 2013. View at Google Scholar
  157. A. García-Bellido, P. Ripoll, and G. Morata, “Developmental compartmentalisation of the wing disk of Drosophila,” Nature New Biology, vol. 245, no. 147, pp. 251–253, 1973. View at Google Scholar · View at Scopus
  158. S. S. Blair, “Compartments and appendage development in Drosophila,” BioEssays, vol. 17, no. 4, pp. 299–309, 1995. View at Google Scholar · View at Scopus
  159. K. P. Landsberg, R. Farhadifar, J. Ranft et al., “Increased cell bond tension governs cell sorting at the Drosophila anteroposterior compartment boundary,” Current Biology, vol. 19, no. 22, pp. 1950–1955, 2009. View at Publisher · View at Google Scholar · View at Scopus
  160. C. Dhamann, A. C. Oates, and M. Brand, “Boundary formation and maintenance in tissue development,” Nature Reviews Genetics, vol. 12, pp. 43–55, 2011. View at Google Scholar
  161. B. Lovegrove, S. Simões, M. L. Rivas et al., “Coordinated control of cell adhesion, polarity, and cytoskeleton underlies hox-induced organogenesis in Drosophila,” Current Biology, vol. 16, no. 22, pp. 2206–2216, 2006. View at Publisher · View at Google Scholar · View at Scopus
  162. F. S. Jones, E. A. Prediger, D. A. Bittner, E. M. De Robertis, and G. M. Edelman, “Cell adhesion molecules as targets for Hox genes: neural cell adhesion molecule promoter activity is modulated by cotransfection with Hox-2.5 and - 2.4,” Proceedings of the National Academy of Sciences of the United States of America, vol. 89, no. 6, pp. 2086–2090, 1992. View at Google Scholar · View at Scopus
  163. S. Fraser, R. Keynes, and A. Lumsden, “Segmentation in the chick embryo hindbrain is defined by cell lineage restrictions,” Nature, vol. 344, no. 6265, pp. 431–435, 1990. View at Publisher · View at Google Scholar · View at Scopus
  164. C. Kiecker and A. Lumsden, “Compartments and their boundaries in vertebrate brain development,” Nature Reviews Neuroscience, vol. 6, no. 7, pp. 553–564, 2005. View at Publisher · View at Google Scholar · View at Scopus
  165. S. Tümpel, L. M. Wiedemann, and R. Krumlauf, “Chapter 8 Hox genes and segmentation of the vertebrate hindbrain,” Current Topics in Developmental Biology, vol. 88, pp. 103–137, 2009. View at Publisher · View at Google Scholar · View at Scopus
  166. Y. Narita and F. M. Rijli, “Chapter 5 Hox genes in neural patterning and circuit formation in the mouse hindbrain,” Current Topics in Developmental Biology, vol. 88, pp. 139–167, 2009. View at Publisher · View at Google Scholar · View at Scopus
  167. B. A. Filas, A. Oltean, S. Majidi et al., “Regional differences in actomyosin contraction shape the primary vesicles in the embryonic chicken brain,” Physical Biology, vol. 9, Article ID 066007, 2012. View at Google Scholar
  168. V. C. Bromleigh and L. P. Freedman, “p21 is a transcriptional target of HOXA10 in differentiating myelomonocytic cells,” Genes & Development, vol. 14, no. 20, pp. 2581–2586, 2000. View at Publisher · View at Google Scholar · View at Scopus
  169. J. Krosl and G. Sauvageau, “AP-1 complex is effector of Hox-induced cellular proliferation and transformation,” Oncogene, vol. 19, no. 45, pp. 5134–5141, 2000. View at Google Scholar · View at Scopus
  170. V. Raman, S. A. Martenser, D. Reisman et al., “Compromised HOXA5 function can limit p53 expression in human breast tumours,” Nature, vol. 405, no. 6789, pp. 974–978, 2000. View at Publisher · View at Google Scholar · View at Scopus
  171. F. Del Bene and J. Wittbrodt, “Cell cycle control by homeobox genes in development and disease,” Seminars in Cell and Developmental Biology, vol. 16, no. 3, pp. 449–460, 2005. View at Publisher · View at Google Scholar · View at Scopus
  172. C. A. Meyer, I. Kramer, R. Dittrich, S. Marzodko, J. Emmerich, and C. F. Lehner, “Drosophila p27dacapo expression during embryogenesis is controlled by a complex regulatory region independent of cell cycle progression,” Development, vol. 129, no. 2, pp. 319–328, 2002. View at Google Scholar · View at Scopus
  173. A. Prokop, S. Bray, E. Harrison, and G. M. Technau, “Homeotic regulation of segment-specific differences in neuroblast numbers and proliferation in the Drosophila central nervous system,” Mechanisms of Development, vol. 74, no. 1-2, pp. 99–110, 1998. View at Publisher · View at Google Scholar · View at Scopus
  174. J. N. Maloof and C. Kenyon, “The Hox gene lin-39 is required during C. elegans vulval induction to select the outcome of Ras signaling,” Development, vol. 125, no. 2, pp. 181–190, 1998. View at Google Scholar · View at Scopus
  175. M. A. Crickmore and R. S. Mann, “The control of size in animals: insights from selector genes,” BioEssays, vol. 30, no. 9, pp. 843–853, 2008. View at Publisher · View at Google Scholar · View at Scopus
  176. F. A. Spencer, F. M. Hoffmann, and W. M. Gelbart, “Decapentaplegic: a gene complex affecting morphogenesis in Drosophila melanogaster,” Cell, vol. 28, no. 3, pp. 451–461, 1982. View at Google Scholar · View at Scopus
  177. M. Affolter and K. Basler, “The Decapentaplegic morphogen gradient: from pattern formation to growth regulation,” Nature Reviews Genetics, vol. 8, no. 9, pp. 663–674, 2007. View at Publisher · View at Google Scholar · View at Scopus
  178. O. Wartlick, P. Mumcu, F. Jülicher, and M. Gonzalez-Gaitan, “Understanding morphogenetic growth control—lessons from flies,” Nature Reviews Molecular Cell Biology, vol. 12, no. 9, pp. 594–604, 2011. View at Publisher · View at Google Scholar · View at Scopus
  179. S. M. Jackson, H. Nakato, M. Sugiura et al., “dally, a Drosophila glypican, controls cellular responses to the TGF-β-related morphogen, Dpp,” Development, vol. 124, no. 20, pp. 4113–4120, 1997. View at Google Scholar · View at Scopus
  180. T. E. Haerry, O. Khalsa, M. B. O'Connor, and K. A. Wharton, “Synergistic signaling by two BMP ligands through the SAX and TKV receptors controls wing growth and patterning in Drosophila,” Development, vol. 125, no. 20, pp. 3977–3987, 1998. View at Google Scholar · View at Scopus
  181. T. Lecuit and S. M. Cohen, “Dpp receptor levels contribute to shaping the Dpp morphogen gradient in the Drosophila wing imaginal disc,” Development, vol. 125, no. 24, pp. 4901–4907, 1998. View at Google Scholar · View at Scopus
  182. H. Tanimoto, S. Itoh, P. Ten Dijke, and T. Tabata, “Hedgehog creates a gradient of DPP activity in Drosophila wing imaginal discs,” Molecular Cell, vol. 5, no. 1, pp. 59–71, 2000. View at Google Scholar · View at Scopus
  183. M. Fujise, S. Takeo, K. Kamimura et al., “Dally regulates Dpp morphogen gradient formation in the Drosophila wing,” Development, vol. 130, no. 8, pp. 1515–1522, 2003. View at Publisher · View at Google Scholar · View at Scopus
  184. T. Y. Belenkaya, C. Han, D. Yan et al., “Drosophila Dpp morphogen movement is independent of dynamin-mediated endocytosis but regulated by the glypican members of heparan sulfate proteoglycans,” Cell, vol. 119, no. 2, pp. 231–244, 2004. View at Publisher · View at Google Scholar · View at Scopus
  185. T. Tsuji, E. Hasegawa, and T. Isshiki, “Neuroblast entry into quiescence is regulated intrinsically by the combined action of spatial Hox proteins and temporal identity factors,” Development, vol. 135, no. 23, pp. 3859–3869, 2008. View at Publisher · View at Google Scholar · View at Scopus
  186. S. J. Salser and C. Kenyon, “A C. elegans Hox gene switches on, off, on and off again to regulate proliferation, differentiation and morphogenesis,” Development, vol. 122, no. 5, pp. 1651–1661, 1996. View at Google Scholar · View at Scopus
  187. G. Shemer and B. Podbilewicz, “LIN-39/Hox triggers cell division and represses EFF-1/fusogen-dependent vulval cell fusion,” Genes & Development, vol. 16, no. 24, pp. 3136–3141, 2002. View at Publisher · View at Google Scholar · View at Scopus
  188. F. Roch and M. Akam, “Ultrabithorax and the control of cell morphology in Drosophila halteres,” Development, vol. 127, no. 1, pp. 97–107, 2000. View at Google Scholar · View at Scopus
  189. M. M. Madhavan and H. A. Schneiderman, “Histological analysis of the dynamics of growth of imaginal discs and histoblast nests during the larval development of Drosophila melanogaster,” Wilhelm Roux's Archives of Developmental Biology, vol. 183, no. 4, pp. 269–305, 1977. View at Google Scholar · View at Scopus
  190. M. Bate and A. Martínez-Arias, “The embryonic origin of imaginal discs in Drosophila,” Development, vol. 112, no. 3, pp. 755–761, 1991. View at Google Scholar · View at Scopus
  191. A. Hannah-Alava, “Morphology and chaetotaxy of the legs of Drosophila melanogaster,” Journal of Morphology, vol. 103, pp. 281–410, 1958. View at Google Scholar
  192. D. L. Stern, “The Hox gene Ultrabithorax modulates the shape and size of the third leg of Drosophila by influencing diverse mechanisms,” Developmental Biology, vol. 256, no. 2, pp. 355–366, 2003. View at Publisher · View at Google Scholar · View at Scopus
  193. A. M. Pattatucci, D. C. Otteson, and T. C. Kaufman, “A functional and structural analysis of the Sex combs reduced locus of Drosophila melanogaster,” Genetics, vol. 129, no. 2, pp. 423–441, 1991. View at Google Scholar · View at Scopus
  194. S. Kerridge and G. Morata, “Developmental effects of some newly induced Ultrabithorax alleles of Drosophila,” Journal of Embryology and Experimental Morphology, vol. 68, pp. 211–234, 1982. View at Google Scholar · View at Scopus
  195. J. Casanova, E. Sánchez-Herrero, and G. Morata, “Prothoracic transformation and functional structure of the Ultrabithorax gene of Drosophila,” Cell, vol. 42, no. 2, pp. 663–669, 1985. View at Google Scholar · View at Scopus
  196. D. L. Stern, “A role of Ultrabithorax in morphological differences between Drosophila species,” Nature, vol. 396, no. 6710, pp. 463–466, 1998. View at Publisher · View at Google Scholar · View at Scopus
  197. G. K. Davis, D. G. Srinivasan, P. J. Wittkopp, and D. L. Stern, “The function and regulation of Ultrabithorax in the legs of Drosophila melanogaster,” Developmental Biology, vol. 308, no. 2, pp. 621–631, 2007. View at Publisher · View at Google Scholar · View at Scopus
  198. T. V. Orenic, L. I. Held Jr., S. W. Paddock, and S. B. Carroll, “The spatial organization of epidermal structures: hairy establishes the geometrical pattern of Drosophila leg bristles by delimiting the domains of achaete expression,” Development, vol. 118, no. 1, pp. 9–20, 1993. View at Google Scholar · View at Scopus
  199. M. Joshi, K. T. Buchanan, S. Shroff, and T. V. Orenic, “Delta and Hairy establish a periodic prepattern that positions sensory bristles in Drosophila legs,” Developmental Biology, vol. 293, no. 1, pp. 64–76, 2006. View at Publisher · View at Google Scholar · View at Scopus
  200. S. Shroff, M. Joshi, and T. V. Orenic, “Differential Delta expression underlies the diversity of sensory organ patterns among the legs of the Drosophila adult,” Mechanisms of Development, vol. 124, no. 1, pp. 43–58, 2007. View at Publisher · View at Google Scholar · View at Scopus
  201. M. Rozowski and M. Akam, “Hox gene control of segment-specific bristle patterns in Drosophila,” Genes & Development, vol. 16, no. 9, pp. 1150–1162, 2002. View at Publisher · View at Google Scholar · View at Scopus
  202. C. E. Sunkel and J. R. S. Whittle, “Brista: a gene involved in the specification and differentiation of distal cephalic and thoracic structures in Drosophila melanogaster,” Roux's Archives of Developmental Biology, vol. 196, no. 2, pp. 124–132, 1987. View at Google Scholar · View at Scopus
  203. S. M. Cohen and G. Jurgens, “Proximal-distal pattern formation in Drosophila: cell autonomous requirement for Distal-less gene activity in limb development,” EMBO Journal, vol. 8, no. 7, pp. 2045–2055, 1989. View at Google Scholar · View at Scopus
  204. G. Panganiban, L. Nagy, and S. B. Carroll, “The role of the Distal-less gene in the development and evolution of insect limbs,” Current Biology, vol. 4, no. 8, pp. 671–675, 1994. View at Publisher · View at Google Scholar · View at Scopus
  205. G. Panganiban, S. M. Irvine, C. Lowe et al., “The origin and evolution of animal appendages,” Proceedings of the National Academy of Sciences of the United States of America, vol. 94, pp. 5162–5166, 1997. View at Publisher · View at Google Scholar
  206. S. M. Cohen, “Specification of limb development in the Drosophila embryo by positional cues from segmentation genes,” Nature, vol. 343, no. 6254, pp. 173–177, 1990. View at Publisher · View at Google Scholar · View at Scopus
  207. B. Cohen, A. A. Simcox, and S. M. Cohen, “Allocation of the thoracic imaginal primordia in the Drosophila embryo,” Development, vol. 117, no. 2, pp. 597–608, 1993. View at Google Scholar · View at Scopus
  208. C. Estella, R. Voutev, and R. S. Mann, “A dynamic network of morphogens and transcription factors patterns the fly leg,” Current Topics in Developmental Biology, vol. 98, pp. 173–198, 2012. View at Publisher · View at Google Scholar · View at Scopus
  209. A. A. Simcox, E. Hersperger, A. Shearn, J. R. S. Whittle, and S. M. Cohen, “Establishment of imaginal discs and histoblast nests in Drosophila,” Mechanisms of Development, vol. 34, no. 1, pp. 11–20, 1991. View at Publisher · View at Google Scholar · View at Scopus
  210. G. Vachon, B. Cohen, C. Pfeifle, M. E. McGuffin, J. Botas, and S. M. Cohen, “Homeotic genes of the Bithorax complex repress limb development in the abdomen of the Drosophila embryo through the target gene distal-less,” Cell, vol. 71, no. 3, pp. 437–450, 1992. View at Publisher · View at Google Scholar · View at Scopus
  211. D. Foronda, B. Estrada, L. de Navas, and E. Sánchez-Herrero, “Requirement of abdominal-A and abdominal-B in the developing genitalia of Drosophila breaks the posterior downregulation rule,” Development, vol. 133, no. 1, pp. 117–127, 2006. View at Publisher · View at Google Scholar · View at Scopus
  212. N. Sambrani, B. Hudry, C. Maurel-Zaffran et al., “Distinct molecular strategies for Hox-mediated limb suppression in Drosophila: from cooperativity to dispensability/antagonism in TALE partnership,” PLoS Genetics, vol. 9, Article ID e1003307, 2013. View at Google Scholar
  213. P. E. Hildreth, “Doublesex, recessive gene that transforms both males and females of drosophila into intersexes,” Genetics, vol. 51, pp. 659–678, 1965. View at Google Scholar · View at Scopus
  214. B. S. Baker and K. A. Ridge, “Sex and the single cell. I. On the action of major loci affecting sex determination in Drosophila melanogaster,” Genetics, vol. 94, no. 2, pp. 383–423, 1980. View at Google Scholar · View at Scopus
  215. F. Karch, B. Weiffenbach, and M. Peifer, “The abdominal region of the bithorax complex,” Cell, vol. 43, no. 1, pp. 81–96, 1985. View at Google Scholar · View at Scopus
  216. M. M. Madhavan and K. Madhaven, “Morphogenesis of the epidermis of adult abdomen of Drosophila,” Journal of Embryology and Experimental Morphology, vol. 60, pp. 1–31, 1980. View at Google Scholar · View at Scopus
  217. N. Ninov, D. A. Chiarelli, and E. Martín-Blanco, “Extrinsic and intrinsic mechanisms directing epithelial cell sheet replacement during Drosophila metamorphosis,” Development, vol. 134, no. 2, pp. 367–379, 2007. View at Publisher · View at Google Scholar · View at Scopus
  218. W. Wang, B. J. Kidd, S. B. Carroll, and J. H. Yoder, “Sexually dimorphic regulation of the Wingless morphogen controls sex-specific segment number in Drosophila,” Proceedings of the National Academy of Sciences of the United States of America, vol. 108, no. 27, pp. 11139–11144, 2011. View at Publisher · View at Google Scholar · View at Scopus
  219. D. Foronda, P. Martín, and E. Sánchez-Herrero, “Drosophila Hox and sex-determination genes control segment elimination through EGFR and extramacrochetae activity,” PLOS Genetics, vol. 8, Article ID e1002874, 2012. View at Google Scholar
  220. J. Garrell and J. Modolell, “The Drosophila extramacrochaetae locus, an antagonist of proneural genes that, like these genes, encodes a helix-loop-helix protein,” Cell, vol. 61, no. 1, pp. 39–48, 1990. View at Publisher · View at Google Scholar · View at Scopus
  221. H. M. Ellis, D. R. Spann, and J. W. Posakony, “extramacrochaetae, a negative regulator of sensory organ development in Drosophila, defines a new class of helix-loop-helix proteins,” Cell, vol. 61, no. 1, pp. 27–38, 1990. View at Publisher · View at Google Scholar · View at Scopus
  222. W. Wang and J. H. Yoder, “Hox-mediated regulation of doublesex sculpts sex-specific abdomen morphology in Drosophila,” Developmental Dynamics, vol. 192, no. 4, 2012. View at Publisher · View at Google Scholar · View at Scopus
  223. N. Hu and J. Castelli-Gair, “Study of the posterior spiracles of Drosophila as a model to understand the genetic and cellular mechanisms controlling morphogenesis,” Developmental Biology, vol. 214, no. 1, pp. 197–210, 1999. View at Publisher · View at Google Scholar · View at Scopus
  224. M. L. Lamka, A. M. Boulet, and S. Sakonju, “Ectopic expression of UBX and ABD-B proteins during Drosophila embryogenesis: competition, not a functional hierarchy, explains phenotypic suppression,” Development, vol. 116, no. 4, pp. 841–854, 1992. View at Google Scholar · View at Scopus
  225. M. A. Kuziora, “Abdominal-B protein isoforms exhibit distinct cuticular transformations and regulatory activities when ectopically expressed in Drosophila embryos,” Mechanisms of Development, vol. 42, no. 3, pp. 125–137, 1993. View at Publisher · View at Google Scholar · View at Scopus
  226. J. Castelli-Gair, S. Greig, G. Micklem, and M. Akam, “Dissecting the temporal requirements for homeotic gene function,” Development, vol. 120, no. 7, pp. 1983–1995, 1994. View at Google Scholar · View at Scopus
  227. J. Casanova, E. Sánchez-Herrero, and G. Morata, “Identification and characterization of a parasegment specific regulatory element of the abdominal-B gene of Drosophila,” Cell, vol. 47, no. 4, pp. 627–636, 1986. View at Google Scholar · View at Scopus
  228. S. E. Celniker, D. J. Keelan, and E. B. Lewis, “The molecular genetics of the bithorax complex of Drosophila: characterization of the products of the Abdominal-B domain,” Genes & Development, vol. 3, no. 9, pp. 1424–1436, 1989. View at Google Scholar · View at Scopus
  229. M. Delorenzi and M. Bienz, “Expression of Abdominal-B homeoproteins in Drosophila embryos,” Development, vol. 108, no. 2, pp. 323–329, 1990. View at Google Scholar · View at Scopus
  230. N. Azpiazu and G. Morata, “Functional and regulatory interactions between Hox and extradenticle genes,” Genes & Development, vol. 12, no. 2, pp. 261–273, 1998. View at Google Scholar · View at Scopus
  231. E. Kurant, C.-Y. Pai, R. Sharf, N. Halachmi, Y. H. Sun, and A. Salzberg, “Dorsotonals/homothorax, the Drosophila homologue of meis1 interacts with extradenticle in patterning of the embryonic PNS,” Development, vol. 125, no. 6, pp. 1037–1048, 1998. View at Google Scholar · View at Scopus
  232. M. L. Rivas, J. M. Espinosa-Vázquez, N. Sambrani et al., “Antagonism versus cooperativity with TALE cofactors at the base of the functional diversification of Hox protein function,” PLoS Genetics, vol. 9, Article ID e1003252, 2013. View at Google Scholar
  233. J. Castelli-Gair, “The lines gene of Drosophila is required for specific functions of the Abdominal-B HOX protein,” Development, vol. 125, no. 7, pp. 1269–1274, 1998. View at Google Scholar · View at Scopus
  234. S. Merabet, J. Castelli-Gair Hombria, N. Hu, J. Pradel, and Y. Graba, “Hox-controlled reorganisation of intrasegmental patterning cues underlies Drosophila posterior spiracle organogenesis,” Development, vol. 132, no. 13, pp. 3093–3102, 2005. View at Publisher · View at Google Scholar · View at Scopus
  235. R. P. Kuhnlein, G. Frommer, M. Friedrich et al., “spalt encodes an evolutionarily conserved zinc finger protein of novel structure which provides homeotic gene function in the head and tail region of the Drosophila embryo,” EMBO Journal, vol. 13, no. 1, pp. 168–179, 1994. View at Google Scholar · View at Scopus
  236. S. Brown and J. Castelli-Gair Hombria, “Drosophila grain encodes a GATA transcription factor required for cell rearrangements during morphogenesis,” Development, vol. 127, no. 22, pp. 4867–4876, 2000. View at Google Scholar · View at Scopus
  237. B. Jones and W. McGinnis, “The regulation of empty spiracles by Abdominal-B mediates an abdominal segment identity function,” Genes & Development, vol. 7, no. 2, pp. 229–240, 1993. View at Google Scholar · View at Scopus
  238. D. Dalton, R. Chadwick, and W. McGinnis, “Expression and embryonic function of empty spiracles: a Drosophila homeo box gene with two patterning functions on the anterior-posterior axis of the embryo,” Genes & Development, vol. 3, no. 12 A, pp. 1940–1956, 1989. View at Google Scholar · View at Scopus
  239. K. Blochlinger, R. Bodmer, J. Jack, L. Y. Jan, and Y. N. Jan, “Primary structure and expression of a product from cut, a locus involved in specifying sensory organ identity in Drosophila,” Nature, vol. 333, no. 6174, pp. 629–635, 1988. View at Google Scholar · View at Scopus
  240. Z. Zhai, N. Ha, F. Papagiannouli et al., “Antagonistic regulation of apoptosis and differentiation by the cut transcription factor represents a tumor-suppressing mechanism in Drosophila,” PLoS Genetics, vol. 8, no. 3, Article ID e1002582, 2012. View at Publisher · View at Google Scholar · View at Scopus
  241. D. A. Harrison, P. E. McCoon, R. Binari, M. Gilman, and N. Perrimon, “Drosophila unpaired encodes a secreted protein that activates the JAK signaling pathway,” Genes & Development, vol. 12, no. 20, pp. 3252–3263, 1998. View at Google Scholar · View at Scopus
  242. J. C.-G. Hombría, S. Brown, S. Häder, and M. P. Zeidler, “Characterisation of Upd2, a Drosophila JAK/STAT pathway ligand,” Developmental Biology, vol. 288, no. 2, pp. 420–433, 2005. View at Publisher · View at Google Scholar · View at Scopus
  243. T. Yagi and M. Takeichi, “Cadherin superfamily genes: functions, genomic organization, and neurologic diversity,” Genes & Development, vol. 14, no. 10, pp. 1169–1180, 2000. View at Google Scholar · View at Scopus
  244. A. B. Jaffe and A. Hall, “Rho GTPases: biochemistry and biology,” Annual Review of Cell and Developmental Biology, vol. 21, pp. 247–269, 2005. View at Publisher · View at Google Scholar · View at Scopus
  245. B. Denholm, S. Brown, R. P. Ray, M. Ruiz-Gómez, H. Skaer, and J. C.-G. Hombría, “Crossveinless-c is a RhoGAP required for actin reorganization during morphogenesis,” Development, vol. 132, no. 10, pp. 2389–2400, 2005. View at Publisher · View at Google Scholar · View at Scopus
  246. S. Simões, B. Denholm, D. Azevedo et al., “Compartmentalisation of Rho regulators directs cell invagination during tissue morphogenesis,” Development, vol. 133, no. 21, pp. 4257–4267, 2006. View at Publisher · View at Google Scholar · View at Scopus
  247. U. Tepass, C. Theres, and E. Knust, “crumbs encodes an EGF-like protein expressed on apical membranes of Drosophila epithelial cells and required for organization of epithelia,” Cell, vol. 61, no. 5, pp. 787–799, 1990. View at Publisher · View at Google Scholar · View at Scopus
  248. A. Wodarz, U. Hinz, M. Engelbert, and E. Knust, “Expression of crumbs confers apical character on plasma membrane domains of ectodermal epithelia of Drosophila,” Cell, vol. 82, no. 1, pp. 67–76, 1995. View at Google Scholar · View at Scopus
  249. F. Grawe, A. Wodarz, B. Lee, E. Knust, and H. Skaer, “The Drosophila genes crumbs and stardust are involved in the biogenesis of adherens junctions,” Development, vol. 122, no. 3, pp. 951–959, 1996. View at Google Scholar · View at Scopus
  250. S. Sotillos, M. Aguilar, and J. C. Hombría, “Forces shaping a Hox morphogenetic gene network,” Proceedings of the National Academy of Sciences of the United States of America, vol. 110, pp. 4303–4308, 2013. View at Google Scholar
  251. J. Curtiss and J. S. Heilig, “Arrowhead encodes a LIM homeodomain protein that distinguishes subsets of Drosophila imaginal cells,” Developmental Biology, vol. 190, no. 1, pp. 129–141, 1997. View at Publisher · View at Google Scholar · View at Scopus
  252. S. Mahajan-Miklos and L. Cooley, “The villin-like protein encoded by the Drosophila quail gene is required for actin bundle assembly during oogenesis,” Cell, vol. 78, no. 2, pp. 291–301, 1994. View at Publisher · View at Google Scholar · View at Scopus
  253. D. Bopp, E. Jamet, S. Baumgartner, M. Burri, and M. Noll, “Isolation of two tissue-specific Drosophila paired box genes, Pox meso and Pox neuro,” EMBO Journal, vol. 8, no. 11, pp. 3447–3457, 1989. View at Google Scholar · View at Scopus
  254. C. Dambly-Chaudiere, E. Jamet, M. Burri et al., “The paired box gene pox neuro:a determinant of poly-innervated sense organs in Drosophila,” Cell, vol. 69, no. 1, pp. 159–172, 1992. View at Publisher · View at Google Scholar · View at Scopus
  255. R. Nolo, L. A. Abbott, and H. J. Bellen, “Senseless, a Zn finger transcription factor, is necessary and sufficient for sensory organ development in Drosophila,” Cell, vol. 102, no. 3, pp. 349–362, 2000. View at Google Scholar · View at Scopus
  256. B. Glise, C. A. Miller, M. Crozatier et al., “Shifted, the Drosophila ortholog of Wnt inhibitory factor-1, controls the distribution and movement of hedgehog,” Developmental Cell, vol. 8, no. 2, pp. 255–266, 2005. View at Publisher · View at Google Scholar · View at Scopus
  257. N. Gorfinkiel, J. Sierra, A. Callejo, C. Ibañez, and I. Guerrero, “The Drosophila ortholog of the human Wnt inhibitor factor shifted controls the diffusion of lipid-modified hedgehog,” Developmental Cell, vol. 8, no. 2, pp. 241–253, 2005. View at Publisher · View at Google Scholar · View at Scopus
  258. J. A. Campos-Ortega and V. Hartenstein, The Embryonic Development of Drosophila Melanogaster, Springer, Berlin, Germany, 1985.
  259. S. Panzer, D. Weigel, and S. K. Beckendorf, “Organogenesis in Drosophila melanogaster: embryonic salivary gland determination is controlled by homeotic and dorsoventral patterning genes,” Development, vol. 114, no. 1, pp. 49–57, 1992. View at Google Scholar · View at Scopus
  260. M. M. Myat and D. J. Andrew, “Organ shape in the Drosophila salivary gland is controlled by regulated, sequential internalization of the primordia,” Development, vol. 127, no. 4, pp. 679–691, 2000. View at Google Scholar · View at Scopus
  261. P. L. Bradley, M. M. Myat, C. A. Comeaux, and D. J. Andrew, “Posterior migration of the salivary gland requires an intact visceral mesoderm and integrin function,” Developmental Biology, vol. 257, no. 2, pp. 249–262, 2003. View at Publisher · View at Google Scholar · View at Scopus
  262. M. M. Myat and D. J. Andrew, “Fork head prevents apoptosis and promotes cell shape change during formation of the Drosophila salivary glands,” Development, vol. 127, no. 19, pp. 4217–4226, 2000. View at Google Scholar · View at Scopus
  263. B. E. Kerman, A. M. Cheshire, and D. J. Andrew, “From fate to function: the Drosophila trachea and salivary gland as models for tubulogenesis,” Differentiation, vol. 74, no. 7, pp. 326–348, 2006. View at Publisher · View at Google Scholar · View at Scopus
  264. R. Maruyama and D. J. Andrew, “Drosophila as a model for epithelial tube formation,” Developmental Dynamics, vol. 241, no. 1, pp. 119–135, 2012. View at Publisher · View at Google Scholar · View at Scopus
  265. D. J. Andrew, M. A. Horner, M. G. Petitt, S. M. Smolik, and M. P. Scott, “Setting limits on homeotic gene function: restraint of Sex combs reduced activity by teashirt and other homeotic genes,” EMBO Journal, vol. 13, no. 5, pp. 1132–1144, 1994. View at Google Scholar · View at Scopus
  266. H. D. Ryoo and R. S. Mann, “The control of trunk Hox specificity and activity by extradenticle,” Genes & Development, vol. 13, no. 13, pp. 1704–1716, 1999. View at Google Scholar · View at Scopus
  267. K. D. Henderson and D. J. Andrew, “Regulation and function of Scr, exd, and hth in the Drosophila salivary gland,” Developmental Biology, vol. 217, no. 2, pp. 362–374, 2000. View at Publisher · View at Google Scholar · View at Scopus
  268. R. Maruyama, E. Grevengoed, P. Stempniewicz, and D. J. Andrew, “Genome-wide analysis reveals a major role in cell fate maintenance and an unexpected role in endoreduplication for the Drosophila FoxA gene fork head,” PLoS ONE, vol. 6, no. 6, Article ID e20901, 2011. View at Publisher · View at Google Scholar · View at Scopus
  269. D. D. Isaac and D. J. Andrew, “Tubulpgenesis in Drosophila: a requirement for the trachealess gene product,” Genes & Development, vol. 10, no. 1, pp. 103–117, 1996. View at Google Scholar · View at Scopus
  270. K. D. Henderson, D. D. Isaac, and D. J. Andrew, “Cell fate specification in the Drosophila salivary gland: the integration of homeotic gene function with the DPP signaling cascade,” Developmental Biology, vol. 205, no. 1, pp. 10–21, 1999. View at Publisher · View at Google Scholar · View at Scopus
  271. U. Lammel, L. Meadows, and H. Saumweber, “Analysis of Drosophila salivary gland, epidermis and CNS development suggests an additional function of brinker in anterior-posterior cell fate specification,” Mechanisms of Development, vol. 92, no. 2, pp. 179–191, 2000. View at Publisher · View at Google Scholar · View at Scopus
  272. J. Torres-Vazquez, S. Park, R. Warrior, and K. Arora, “The transcription factor Schnurri plays a dual role in mediating Dpp signaling during embryogenesis,” Development, vol. 128, no. 9, pp. 1657–1670, 2001. View at Google Scholar · View at Scopus
  273. Y. M. Kuo, N. Jones, B. Zhou, S. Panzer, V. Larson, and S. K. Beckendorf, “Salivary duct determination in Drosophila: roles of the EGF receptor signaling pathway and the transcription factors fork head and trachealess,” Development, vol. 122, no. 6, pp. 1909–1917, 1996. View at Google Scholar · View at Scopus
  274. A. S. Haberman, D. D. Isaac, and D. J. Andrew, “Specification of cell fates within the salivary gland primordium,” Developmental Biology, vol. 258, no. 2, pp. 443–453, 2003. View at Publisher · View at Google Scholar · View at Scopus
  275. D. J. Andrew, A. Baig, P. Bhanot, S. M. Smolik, and K. D. Henderson, “The Drosophila dCREB-A gene is required for dorsal/ventral patterning of the larval cuticle,” Development, vol. 124, no. 1, pp. 181–193, 1997. View at Google Scholar · View at Scopus
  276. A. W. Moore, S. Barbel, L. Y. Jan, and Y. N. Jan, “A genomewide survey of basic helix-loop-helix factors in Drosophila,” Proceedings of the National Academy of Sciences of the United States of America, vol. 97, no. 19, pp. 10436–10441, 2000. View at Google Scholar · View at Scopus
  277. V. Chandrasekaran and S. K. Beckendorf, “Senseless is necessary for the survival of embryonic salivary glands in Drosophila,” Development, vol. 130, no. 19, pp. 4719–4728, 2003. View at Publisher · View at Google Scholar · View at Scopus
  278. D. Weigel, G. Jürgens, F. Küttner, E. Seifert, and H. Jäckle, “The homeotic gene fork head encodes a nuclear protein and is expressed in the terminal regions of the Drosophila embryo,” Cell, vol. 57, no. 4, pp. 645–658, 1989. View at Google Scholar · View at Scopus
  279. B. Zhou, A. Bagri, and S. K. Beckendorf, “Salivary gland determination in Drosophila: a salivary-specific, fork head enhancer integrates spatial pattern and allows fork head autoregulation,” Developmental Biology, vol. 237, no. 1, pp. 54–67, 2001. View at Publisher · View at Google Scholar · View at Scopus
  280. E. W. Abrams and D. J. Andrew, “CrebA regulates secretory activity in the Drosophila salivary gland and epidermis,” Development, vol. 132, no. 12, pp. 2743–2758, 2005. View at Publisher · View at Google Scholar · View at Scopus
  281. E. W. Abrams, W. K. Mihoulides, and D. J. Andrew, “Fork head and Sage maintain a uniform and patent salivary gland lumen through regulation of two downstream target genes, PH4αSG1 and PH4αSG2,” Development, vol. 133, no. 18, pp. 3517–3527, 2006. View at Publisher · View at Google Scholar · View at Scopus
  282. G. Brönner, Q. Chu-LaGraff, C. Q. Doe et al., “Sp1/egr-like zinc-finger protein required for endoderm specification and germ-layer formation in Drosophila,” Nature, vol. 369, no. 6482, pp. 664–668, 1994. View at Publisher · View at Google Scholar · View at Scopus
  283. R. M. Fox, C. D. Hanlon, and D. J. Andrew, “The CrebA/Creb3-like transcription factors are major and direct regulators of secretory capacity,” Journal of Cell Biology, vol. 191, no. 3, pp. 479–492, 2010. View at Publisher · View at Google Scholar · View at Scopus
  284. R. M. Fox, A. Vaishnavi, R. Maruyama, and D. J. Andrew, “Organ-specific gene expression: the bHLH protein Sage provides tissue specificity to Drosophila FoxA,” Development, vol. 140, pp. 2160–2171, 2013. View at Google Scholar
  285. N. Xu, B. Keung, and M. M. Myat, “Rho GTPase controls invagination and cohesive migration of the Drosophila salivary gland through Crumbs and Rho-kinase,” Developmental Biology, vol. 321, no. 1, pp. 88–100, 2008. View at Publisher · View at Google Scholar · View at Scopus
  286. U. Häcker and N. Perrimon, “DRhoGEF2 encodes a member of the Dbl family of oncogenes and controls cell shape changes during gastrulation in Drosophila,” Genes & Development, vol. 12, no. 2, pp. 274–284, 1998. View at Google Scholar · View at Scopus
  287. K. K. Nikolaidou and K. Barrett, “A Rho GTPase signaling pathway is used reiteratively in epithelial folding and potentially selects the outcome of Rho activation,” Current Biology, vol. 14, no. 20, pp. 1822–1826, 2004. View at Publisher · View at Google Scholar · View at Scopus
  288. E. Eldon, S. Kooyer, D. D'Evelyn et al., “The Drosophila 18 wheeler is required for morphogenesis and has striking similarities to Toll,” Development, vol. 120, no. 4, pp. 885–899, 1994. View at Google Scholar · View at Scopus
  289. T. Kolesnikov and S. K. Beckendorf, “18 Wheeler regulates apical constriction of salivary gland cells via the Rho-GTPase-signaling pathway,” Developmental Biology, vol. 307, no. 1, pp. 53–61, 2007. View at Publisher · View at Google Scholar · View at Scopus
  290. C. Cao, Y. Liu, and M. Lehmann, “Fork head controls the timing and tissue selectivity of steroid-induced developmental cell death,” Journal of Cell Biology, vol. 176, no. 6, pp. 843–852, 2007. View at Publisher · View at Google Scholar · View at Scopus
  291. K. I. Kivirikko and T. Pihlajaniemi, “Collagen hydroxylases and the protein disulfide isomerase subunit of prolyl 4-hydroxylases,” Advances in Enzymology and Related Areas of Molecular Biology, vol. 72, pp. 325–398, 1998. View at Google Scholar · View at Scopus
  292. N. Xu, G. Bagumian, M. Galiano, and M. M. Myat, “Rho GTPase controls Drosophila salivary gland lumen size through regulation of the actin cytoskeleton and Moesin,” Development, vol. 138, no. 24, pp. 5415–5427, 2011. View at Publisher · View at Google Scholar · View at Scopus
  293. M. M. Myat and D. J. Andrew, “Epithelial tube morphology is determined by the polarized growth and delivery of apical membrane,” Cell, vol. 111, no. 6, pp. 879–891, 2002. View at Publisher · View at Google Scholar · View at Scopus
  294. M. A. Welte, S. P. Gross, M. Postner, S. M. Block, and E. F. Wieschaus, “Developmental regulation of vesicle transport in Drosophila embryos: forces and kinetics,” Cell, vol. 92, no. 4, pp. 547–557, 1998. View at Publisher · View at Google Scholar · View at Scopus
  295. K. L. Mosley-Bishop, Q. Li, K. Patterson, and J. A. Fischer, “Molecular analysis of the klarsicht gene and its role in nuclear migration within differentiating cells of the Drosophila eye,” Current Biology, vol. 9, no. 21, pp. 1211–1220, 1999. View at Google Scholar · View at Scopus
  296. K. Shim, K. J. Blake, J. Jack, and M. A. Krasnow, “The Drosophila ribbon gene encodes a nuclear BTB domain protein that promotes epithelial migration and morphogenesis,” Development, vol. 128, no. 23, pp. 4923–4933, 2001. View at Google Scholar · View at Scopus
  297. P. L. Bradley and D. J. Andrew, “Ribbon encodes a novel BTB/POZ protein required for directed cell migration in Drosophila melanogaster,” Development, vol. 128, no. 15, pp. 3001–3015, 2001. View at Google Scholar · View at Scopus
  298. B. E. Kerman, A. M. Cheshire, M. M. Myat, and D. J. Andrew, “Ribbon modulates apical membrane during tube elongation through Crumbs and Moesin,” Developmental Biology, vol. 320, no. 1, pp. 278–288, 2008. View at Publisher · View at Google Scholar · View at Scopus
  299. N. Xu and M. M. Myat, “Coordinated control of lumen size and collective migration in the salivary gland,” Fly, vol. 6, pp. 142–146, 2012. View at Google Scholar
  300. M. S. Vining, P. L. Bradley, C. A. Comeaux, and D. J. Andrew, “Organ positioning in Drosophila requires complex tissue-tissue interactions,” Developmental Biology, vol. 287, no. 1, pp. 19–34, 2005. View at Publisher · View at Google Scholar · View at Scopus
  301. K. E. Harris and S. K. Beckendorf, “Different Wnt signals act through the frizzled and RYK receptors during Drosophila salivary gland migration,” Development, vol. 134, no. 11, pp. 2017–2025, 2007. View at Publisher · View at Google Scholar · View at Scopus
  302. R. Galant and S. B. Carroll, “Evolution of a transcriptional repression domain in an insect Hox protein,” Nature, vol. 415, no. 6874, pp. 910–913, 2002. View at Publisher · View at Google Scholar · View at Scopus
  303. M. Ronshaugen, N. McGinnis, and W. McGinnis, “Hox protein mutation and macroevolution of the insect body plan,” Nature, vol. 415, no. 6874, pp. 914–917, 2002. View at Publisher · View at Google Scholar · View at Scopus
  304. S. Jeong, A. Rokas, and S. B. Carroll, “Regulation of body pigmentation by the abdominal-B Hox protein and its gain and loss in Drosophila evolution,” Cell, vol. 125, no. 7, pp. 1387–1399, 2006. View at Publisher · View at Google Scholar · View at Scopus
  305. T. M. Williams, J. E. Selegue, T. Werner, N. Gompel, A. Kopp, and S. B. Carroll, “The regulation and evolution of a genetic switch controlling sexually dimorphic traits in Drosophila,” Cell, vol. 134, no. 4, pp. 610–623, 2008. View at Publisher · View at Google Scholar · View at Scopus
  306. D. M. Liubicich, J. M. Serano, A. Pavlopoulos et al., “Knockdown of Parhyale Ultrabithorax recapitulates evolutionary changes in crustacean appendage morphology,” Proceedings of the National Academy of Sciences of the United States of America, vol. 106, no. 33, pp. 13892–13896, 2009. View at Publisher · View at Google Scholar · View at Scopus
  307. A. Pavlopoulos, Z. Kontarakis, D. M. Liubicich et al., “Probing the evolution of appendage specialization by Hox gene misexpression in an emerging model crustacean,” Proceedings of the National Academy of Sciences of the United States of America, vol. 106, no. 33, pp. 13897–13902, 2009. View at Publisher · View at Google Scholar · View at Scopus
  308. W. A. Rogers, J. R. Salomone, D. J. Tacy et al., “Recurrent modification of a conserved cis-regulatory element underlies fruit fly pigmentation diversity,” PLoS Genetics, vol. 9, Article ID e1003740, 2013. View at Google Scholar