Table of Contents Author Guidelines Submit a Manuscript
Scientifica
Volume 2013, Article ID 750871, 17 pages
http://dx.doi.org/10.1155/2013/750871
Review Article

Mammalian Tribbles Homologs at the Crossroads of Endoplasmic Reticulum Stress and Mammalian Target of Rapamycin Pathways

1Research Service and Division of Nephrology-Hypertension, Veterans Affairs San Diego Healthcare System, Veterans Medical Research Foundation, Mail Code 151, 3350 La Jolla Village Drive, San Diego, CA 92161, USA
2Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA

Received 7 October 2013; Accepted 20 November 2013

Academic Editors: F. Artunc, J. L. Barnes, and G.-P. Zhou

Copyright © 2013 Robyn Cunard. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. D. Iglehart and D. P. Silver, “Synthetic lethality: a new direction in cancer-drug development,” The New England Journal of Medicine, vol. 361, no. 2, pp. 189–191, 2009. View at Publisher · View at Google Scholar · View at Scopus
  2. J. V. Bonventre and L. Yang, “Cellular pathophysiology of ischemic acute kidney injury,” Journal of Clinical Investigation, vol. 121, no. 11, pp. 4210–4221, 2011. View at Publisher · View at Google Scholar · View at Scopus
  3. R. Bellomo, J. A. Kellum, and C. Ronco, “Acute kidney injury,” The Lancet, vol. 380, no. 9843, pp. 756–766, 2012. View at Google Scholar
  4. A. Zarjou and A. Agarwal, “Sepsis and acute kidney injury,” Journal of the American Society of Nephrology, vol. 22, no. 6, pp. 999–1006, 2011. View at Publisher · View at Google Scholar · View at Scopus
  5. J. Wada and H. Makino, “Inflammation and the pathogenesis of diabetic nephropathy,” Clinical Science, vol. 124, no. 3, pp. 139–152, 2013. View at Google Scholar
  6. D. Noone and C. Licht, “Chronic kidney disease: a new look at pathogenetic mechanisms and treatment options,” Pediatric Nephrology, 2013. View at Publisher · View at Google Scholar
  7. A. V. Cybulsky, “The intersecting roles of endoplasmic reticulum stress, ubiquitinproteasome system, and autophagy in the pathogenesis of proteinuric kidney disease,” Kidney International, vol. 84, no. 1, pp. 25–33, 2013. View at Google Scholar
  8. L. J. Hale and R. J. Coward, “Insulin signalling to the kidney in health and disease,” Clinical Science, vol. 124, no. 6, pp. 351–370, 2013. View at Google Scholar
  9. W. Lieberthal and J. S. Levine, “Mammalian target of rapamycin and the kidney. I. The signaling pathway,” The American Journal of Physiology, vol. 303, no. 1, pp. F1–F10, 2012. View at Google Scholar
  10. T. C. Seher and M. Leptin, “Tribbles, a cell-cycle brake that coordinates proliferation and morphogenesis during Drosophila gastrulation,” Current Biology, vol. 10, no. 11, pp. 623–629, 2000. View at Publisher · View at Google Scholar · View at Scopus
  11. J. Mata, S. Curado, A. Ephrussi, and P. Rorth, “Tribbles coordinates mitosis and morphogenesis in Drosophila by regulating string/CDC25 proteolysis,” Cell, vol. 101, no. 5, pp. 511–522, 2000. View at Google Scholar · View at Scopus
  12. J. Grosshans and E. Wieschaus, “A genetic link between morphogenesis and cell division during formation of the ventral furrow in Drosophila,” Cell, vol. 101, no. 5, pp. 523–531, 2000. View at Google Scholar · View at Scopus
  13. L. A. Johnston, “Cell cycle: the trouble with tribbles,” Current Biology, vol. 10, no. 13, pp. R502–R504, 2000. View at Publisher · View at Google Scholar · View at Scopus
  14. P. Rørth, K. Szabo, and G. Texido, “The level of C/EBP protein is critical for cell migration during Drosophila oogenesis and is tightly controlled by regulated degradation,” Molecular Cell, vol. 6, no. 1, pp. 23–30, 2000. View at Google Scholar · View at Scopus
  15. V. Masoner, R. Das, L. Pence et al., “The kinase domain of Drosophila Tribbles is required for turnover of fly C/EBP during cell migration,” Developmental Biology, vol. 375, no. 1, pp. 33–44, 2013. View at Google Scholar
  16. T. Duncan and T. T. Su, “Embryogenesis: coordinating cell division with gastrulation,” Current Biology, vol. 14, no. 8, pp. R305–R307, 2004. View at Publisher · View at Google Scholar · View at Scopus
  17. P. Fichelson and M. Gho, “Mother-daughter precursor cell fate transformation after Cdc2 down-regulation in the Drosophila bristle lineage,” Developmental Biology, vol. 276, no. 2, pp. 367–377, 2004. View at Publisher · View at Google Scholar · View at Scopus
  18. L. L. Dobens Jr. and S. Bouyain, “Developmental roles of tribbles protein family members,” Developmental Dynamics, vol. 241, no. 8, pp. 1239–1248, 2012. View at Google Scholar
  19. H. LaFerriere, D. J. Guarnieri, D. Sitaraman, S. Diegelmann, U. Heberlein, and T. Zars, “Genetic dissociation of ethanol sensitivity and memory formation in Drosophila melanogaster,” Genetics, vol. 178, no. 4, pp. 1895–1902, 2008. View at Publisher · View at Google Scholar · View at Scopus
  20. Y. Saka and J. C. Smith, “A Xenopus tribbles orthologue is required for the progression of mitosis and for development of the nervous system,” Developmental Biology, vol. 273, no. 2, pp. 210–225, 2004. View at Publisher · View at Google Scholar · View at Scopus
  21. N. Pujol, S. Cypowyj, K. Ziegler et al., “Distinct innate immune responses to infection and wounding in the C. elegans epidermis,” Current Biology, vol. 18, no. 7, pp. 481–489, 2008. View at Publisher · View at Google Scholar · View at Scopus
  22. K. Ziegler, C. L. Kurz, S. Cypowyj et al., “Antifungal innate immunity in C. elegans: PKCδ links G protein signaling and a conserved p38 MAPK cascade,” Cell Host and Microbe, vol. 5, no. 4, pp. 341–352, 2009. View at Publisher · View at Google Scholar · View at Scopus
  23. C. Couillault, P. Fourquet, M. Pophillat, and J. J. Ewbank, “A UPR-independent infection-specific role for a BiP/GRP78 protein in the control of antimicrobial peptide expression in C. elegans epidermis,” Virulence, vol. 3, no. 3, pp. 299–308, 2012. View at Google Scholar
  24. F. Wilkin, N. Suarez-Huerta, B. Robaye et al., “Characterization of a phosphoprotein whose mRNA is regulated by the mitogenic pathways in dog thyroid cells,” European Journal of Biochemistry, vol. 248, no. 3, pp. 660–668, 1997. View at Google Scholar · View at Scopus
  25. F. Wilkin, V. Savonet, A. Radulescu, J. Petermans, J. E. Dumont, and C. Maenhaut, “Identification and characterization of novel genes modulated in the thyroid of dogs treated with methimazole and propylthiouracil,” Journal of Biological Chemistry, vol. 271, no. 45, pp. 28451–28457, 1996. View at Publisher · View at Google Scholar · View at Scopus
  26. K. Mayumi-Matsuda, S. Kojima, H. Suzuki, and T. Sakata, “Identification of a novel kinase-like gene induced during neuronal cell death,” Biochemical and Biophysical Research Communications, vol. 258, no. 2, pp. 260–264, 1999. View at Publisher · View at Google Scholar · View at Scopus
  27. M. Wu, L.-G. Xu, Z. Zhai, and H.-B. Shu, “SINK is a p65-interacting negative regulator of NF-κB-dependent transcription,” Journal of Biological Chemistry, vol. 278, no. 29, pp. 27072–27079, 2003. View at Publisher · View at Google Scholar · View at Scopus
  28. A. J. Bowers, S. Scully, and J. F. Boylan, “SKIP3, a novel Drosophila tribbles ortholog, is overexpressed in human tumors and is regulated by hypoxia,” Oncogene, vol. 22, no. 18, pp. 2823–2835, 2003. View at Publisher · View at Google Scholar · View at Scopus
  29. K. Tang, R. L. Finley Jr., D. Nie, and K. V. Honn, “Identification of 12-lipoxygenase interaction with cellular proteins by yeast two-hybrid screening,” Biochemistry, vol. 39, no. 12, pp. 3185–3191, 2000. View at Publisher · View at Google Scholar · View at Scopus
  30. T. Yokoyama and T. Nakamura, “Tribbles in disease: signaling pathways important for cellular function and neoplastic transformation,” Cancer Science, vol. 102, no. 6, pp. 1115–1122, 2011. View at Publisher · View at Google Scholar · View at Scopus
  31. S. K. Hanks and T. Hunter, “The eukaryotic protein kinase superfamily: kinase (catalytic) domain structure and classification,” The FASEB Journal, vol. 9, no. 8, pp. 576–596, 1995. View at Google Scholar · View at Scopus
  32. Z. Hegedus, A. Czibula, and E. Kiss-Toth, “Tribbles: a family of kinase-like proteins with potent signalling regulatory function,” Cellular Signalling, vol. 19, no. 2, pp. 238–250, 2007. View at Publisher · View at Google Scholar · View at Scopus
  33. J. Boudeau, D. Miranda-Saavedra, G. J. Barton, and D. R. Alessi, “Emerging roles of pseudokinases,” Trends in Cell Biology, vol. 16, no. 9, pp. 443–452, 2006. View at Publisher · View at Google Scholar · View at Scopus
  34. A. Remenyi, M. C. Good, and W. A. Lim, “Docking interactions in protein kinase and phosphatase networks,” Current Opinion in Structural Biology, vol. 16, no. 6, pp. 676–685, 2006. View at Google Scholar
  35. E. Kiss-Toth, S. M. Bagstaff, H. Y. Sung et al., “Human tribbles, a protein family controlling mitogen-activated protein kinase cascades,” Journal of Biological Chemistry, vol. 279, no. 41, pp. 42703–42708, 2004. View at Publisher · View at Google Scholar · View at Scopus
  36. E. Zeqiraj and D. M. van Aalten, “Pseudokinases-remnants of evolution or key allosteric regulators?” Current Opinion in Structural Biology, vol. 20, no. 6, pp. 772–781, 2010. View at Publisher · View at Google Scholar · View at Scopus
  37. B.-E. Xu, J. M. English, J. L. Wilsbacher, S. Stippec, E. J. Goldsmith, and M. H. Cobb, “WNK1, a novel mammalian serine/threonine protein kinase lacking the catalytic lysine in subdomain II,” Journal of Biological Chemistry, vol. 275, no. 22, pp. 16795–16801, 2000. View at Publisher · View at Google Scholar · View at Scopus
  38. F. H. Wilson, S. Disse-Nicodème, K. A. Choate et al., “Human hypertension caused by mutations in WNK kinases,” Science, vol. 293, no. 5532, pp. 1107–1112, 2001. View at Publisher · View at Google Scholar · View at Scopus
  39. K. Mukherjee, M. Sharma, H. Urlaub et al., “CASK functions as a Mg2+-independent neurexin kinase,” Cell, vol. 133, no. 2, pp. 328–339, 2008. View at Publisher · View at Google Scholar · View at Scopus
  40. F. Shi, S. E. Telesco, Y. Liu, R. Radhakrishnan, and M. A. Lemmona, “ErbB3/HER3 intracellular domain is competent to bind ATP and catalyze autophosphorylation,” Proceedings of the National Academy of Sciences of the United States of America, vol. 107, no. 17, pp. 7692–7697, 2010. View at Publisher · View at Google Scholar · View at Scopus
  41. A. P. Kornev and S. S. Taylor, “Pseudokinases: functional insights gleaned from structure,” Structure, vol. 17, no. 1, pp. 5–7, 2009. View at Publisher · View at Google Scholar · View at Scopus
  42. L. Qi, J. E. Heredia, J. Y. Altarejos et al., “TRB3 links the E3 ubiquitin ligase COF1 to lipid metabolism,” Science, vol. 312, no. 5781, pp. 1763–1766, 2006. View at Publisher · View at Google Scholar · View at Scopus
  43. K. Keeshan, W. Bailis, P. H. Dedhia et al., “Transformation by Tribbles homolog 2 (Trib2) requires both the Trib2 kinase domain and COP1 binding,” Blood, vol. 116, no. 23, pp. 4948–4957, 2010. View at Publisher · View at Google Scholar · View at Scopus
  44. T. Yokoyama, Y. Kanno, Y. Yamazaki, T. Takahara, S. Miyata, and T. Nakamura, “Trib1 links the MEK1/ERK pathway in myeloid leukemogenesis,” Blood, vol. 116, no. 15, pp. 2768–2775, 2010. View at Publisher · View at Google Scholar · View at Scopus
  45. R. K. Humphrey, C. J. Newcomb, S.-M. A. Yu et al., “Mixed lineage kinase-3 stabilizes and functionally cooperates with TRIBBLES-3 to compromise mitochondrial integrity in cytokine-induced death of pancreatic beta cells,” Journal of Biological Chemistry, vol. 285, no. 29, pp. 22426–22436, 2010. View at Publisher · View at Google Scholar · View at Scopus
  46. N. Ohoka, S. Sakai, K. Onozaki, M. Nakanishi, and H. Hayashi, “Anaphase-promoting complex/cyclosome-cdh1 mediates the ubiquitination and degradation of TRB3,” Biochemical and Biophysical Research Communications, vol. 392, no. 3, pp. 289–294, 2010. View at Publisher · View at Google Scholar · View at Scopus
  47. M. Imajo and E. Nishida, “Human Tribbles homolog 1 functions as a negative regulator of retinoic acid receptor,” Genes to Cells, vol. 15, no. 10, pp. 1089–1097, 2010. View at Publisher · View at Google Scholar · View at Scopus
  48. H. Okamoto, E. Latres, R. Liu et al., “Genetic deletion of Trb3, the mammalian Drosophila tribbles homolog, displays normal hepatic insulin signaling and glucose homeostasis,” Diabetes, vol. 56, no. 5, pp. 1350–1356, 2007. View at Publisher · View at Google Scholar · View at Scopus
  49. J. Ashton-Chess, M. Giral, M. Mengel et al., “Tribbles-1 as a novel biomarker of chronic antibody-mediated rejection,” Journal of the American Society of Nephrology, vol. 19, no. 6, pp. 1116–1127, 2008. View at Publisher · View at Google Scholar · View at Scopus
  50. A. Ostertag, A. Jones, A. J. Rose et al., “Control of adipose tissue inflammation through TRB1,” Diabetes, vol. 59, no. 8, pp. 1991–2000, 2010. View at Publisher · View at Google Scholar · View at Scopus
  51. T. Satoh, H. Kidoya, H. Naito et al., “Critical role of Trib1 in differentiation of tissue-resident M2-like macrophages,” Nature, vol. 495, no. 7442, pp. 524–528, 2013. View at Google Scholar
  52. E. Selim, J. T. Frkanec, and R. Cunard, “Fibrates upregulate TRB3 in lymphocytes independent of PPARα by augmenting CCAAT/enhancer-binding proteinβ (C/EBPβ) expression,” Molecular Immunology, vol. 44, no. 6, pp. 1218–1229, 2007. View at Publisher · View at Google Scholar · View at Scopus
  53. E. Morse, J. Schroth, N.-H. You et al., “TRB3 is stimulated in diabetic kidneys, regulated by the ER stress marker CHOP, and is a suppressor of podocyte MCP-1,” The American Journal of Physiology, vol. 299, no. 5, pp. F965–F972, 2010. View at Publisher · View at Google Scholar · View at Scopus
  54. J. Liu, X. Wu, J. L. Franklin et al., “Mammalian Tribbles homolog 3 impairs insulin action in skeletal muscle: role in glucose-induced insulin resistance,” The American Journal of Physiology, vol. 298, no. 3, pp. E565–E576, 2010. View at Publisher · View at Google Scholar · View at Scopus
  55. M. Takasato, C. Kobayashi, K. Okabayashi et al., “Trb2, a mouse homolog of tribbles, is dispensable for kidney and mouse development,” Biochemical and Biophysical Research Communications, vol. 373, no. 4, pp. 648–652, 2008. View at Publisher · View at Google Scholar · View at Scopus
  56. H. Y. Sung, S. E. Francis, N. Arnold et al., “Enhanced macrophage tribbles-1 expression in murine experimental atherosclerosis,” Biology, vol. 1, no. 1, pp. 43–57, 2012. View at Google Scholar
  57. N. Ohoka, S. Yoshii, T. Hattori, K. Onozaki, and H. Hayashi, “TRB3, a novel ER stress-inducible gene, is induced via ATF4-CHOP pathway and is involved in cell death,” EMBO Journal, vol. 24, no. 6, pp. 1243–1255, 2005. View at Publisher · View at Google Scholar · View at Scopus
  58. L. V. Sharova, A. A. Sharov, T. Nedorezov, Y. Piao, N. Shaik, and M. S. H. Ko, “Database for mRNA half-life of 19 977 genes obtained by DNA microarray analysis of pluripotent and differentiating mouse embryonic stem cells,” DNA Research, vol. 16, no. 1, pp. 45–58, 2009. View at Publisher · View at Google Scholar · View at Scopus
  59. Y. Zhou, L. Li, Q. Liu et al., “E3 ubiquitin ligase SIAH1 mediates ubiquitination and degradation of TRB3,” Cellular Signalling, vol. 20, no. 5, pp. 942–948, 2008. View at Publisher · View at Google Scholar · View at Scopus
  60. K. Shimizu, S. Takahama, Y. Endo, and T. Sawasaki, “Stress-inducible caspase substrate TRB3 promotes nuclear translocation of procaspase-3,” PLoS ONE, vol. 7, no. 8, Article ID e42721, 2012. View at Google Scholar
  61. S. Kato and K. Du, “TRB3 modulates C2C12 differentiation by interfering with Akt activation,” Biochemical and Biophysical Research Communications, vol. 353, no. 4, pp. 933–938, 2007. View at Publisher · View at Google Scholar · View at Scopus
  62. P. Sathyanarayana, A. Dev, J. Fang et al., “EPO receptor circuits for primary erythroblast survival,” Blood, vol. 111, no. 11, pp. 5390–5399, 2008. View at Publisher · View at Google Scholar · View at Scopus
  63. O. Bezy, C. Vernochet, S. Gesta, S. R. Farmer, and C. R. Kahn, “TRB3 blocks adipocyte differentiation through the inhibition of C/EBPβ transcriptional activity,” Molecular and Cellular Biology, vol. 27, no. 19, pp. 6818–6831, 2007. View at Publisher · View at Google Scholar · View at Scopus
  64. Y. Takahashi, N. Ohoka, H. Hayashi, and R. Sato, “TRB3 suppresses adipocyte differentiation by negatively regulating PPARγ transcriptional activity,” Journal of Lipid Research, vol. 49, no. 4, pp. 880–892, 2008. View at Publisher · View at Google Scholar · View at Scopus
  65. M. C. Chan, P. H. Nguyen, B. N. Davis et al., “A novel regulatory mechanism of the bone morphogenetic protein (BMP) signaling pathway involving the carboxyl-terminal tail domain of BMP type II receptor,” Molecular and Cellular Biology, vol. 27, no. 16, pp. 5776–5789, 2007. View at Publisher · View at Google Scholar · View at Scopus
  66. D. Örd and T. Örd, “Mouse NIPK interacts with ATF4 and affects its transcriptional activity,” Experimental Cell Research, vol. 286, no. 2, pp. 308–320, 2003. View at Publisher · View at Google Scholar · View at Scopus
  67. D. Örd and T. Örd, “Characterization of human NIPK (TRB3, SKIP3) gene activation in stressful conditions,” Biochemical and Biophysical Research Communications, vol. 330, no. 1, pp. 210–218, 2005. View at Publisher · View at Google Scholar · View at Scopus
  68. C. W. Liew, J. Bochenski, D. Kawamori et al., “The pseudokinase tribbles homolog 3 interacts with ATF4 to negatively regulate insulin exocytosis in human and mouse β cells,” Journal of Clinical Investigation, vol. 120, no. 8, pp. 2876–2888, 2010. View at Publisher · View at Google Scholar · View at Scopus
  69. T. Naiki, E. Saijou, Y. Miyaoka, K. Sekine, and A. Miyajima, “TRB2, a mouse tribbles ortholog, suppresses adipocyte differentiation by inhibiting AKT and C/EBP,” Journal of Biological Chemistry, vol. 282, no. 33, pp. 24075–24082, 2007. View at Publisher · View at Google Scholar · View at Scopus
  70. K. Keeshan, Y. He, B. J. Wouters et al., “Tribbles homolog 2 inactivates C/EBPα and causes acute myelogenous leukemia,” Cancer Cell, vol. 10, no. 5, pp. 401–411, 2006. View at Publisher · View at Google Scholar · View at Scopus
  71. P. H. Dedhia, K. Keeshan, S. Uljon et al., “Differential ability of Tribbles family members to promote degradation of C/EBPα and induce acute myelogenous leukemia,” Blood, vol. 116, no. 8, pp. 1321–1328, 2010. View at Publisher · View at Google Scholar · View at Scopus
  72. M. Matsumoto, S. Han, T. Kitamura, and D. Accili, “Dual role of transcription factor FoxO1 in controlling hepatic insulin sensitivity and lipid metabolism,” Journal of Clinical Investigation, vol. 116, no. 9, pp. 2464–2472, 2006. View at Publisher · View at Google Scholar · View at Scopus
  73. F. Zanella, O. Renner, B. García et al., “Human TRIB2 is a repressor of FOXO that contributes to the malignant phenotype of melanoma cells,” Oncogene, vol. 29, no. 20, pp. 2973–2982, 2010. View at Publisher · View at Google Scholar · View at Scopus
  74. E. Dugast, E. Kiss-Toth, L. Docherty et al., “Identification of tribbles-1 as a novel binding partner of Foxp3 in regulatory T cells,” Journal of Biological Chemistry, vol. 288, no. 14, pp. 10051–10060, 2013. View at Google Scholar
  75. D. Weismann, D. M. Erion, I. Ignatova-Todorava et al., “Knockdown of the gene encoding Drosophila tribbles homologue 3 (Trib3) improves insulin sensitivity through peroxisome proliferator-activated receptor-γ (PPAR-γ) activation in a rat model of insulin resistance,” Diabetologia, vol. 54, no. 4, pp. 935–944, 2011. View at Publisher · View at Google Scholar · View at Scopus
  76. C. D. Dummer, V. N. Carpio, L. F. S. Gonçalves, R. C. Manfro, and F. V. Veronese, “FOXP3+ regulatory T cells: from suppression of rejection to induction of renal allograft tolerance,” Transplant Immunology, vol. 26, no. 1, pp. 1–10, 2012. View at Publisher · View at Google Scholar · View at Scopus
  77. X. C. Li and L. A. Turka, “An update on regulatory T cells in transplant tolerance and rejection,” Nature Reviews Nephrology, vol. 6, no. 10, pp. 577–583, 2010. View at Publisher · View at Google Scholar · View at Scopus
  78. Y. S. Hye, H. Guan, A. Czibula et al., “Human tribbles-1 controls proliferation and chemotaxis of smooth muscle cells via MAPK signaling pathways,” Journal of Biological Chemistry, vol. 282, no. 25, pp. 18379–18387, 2007. View at Publisher · View at Google Scholar · View at Scopus
  79. R. Burkhardt, S.-A. Toh, W. R. Lagor et al., “Trib1 is a lipid- and myocardial infarction-associated gene that regulates hepatic lipogenesis and VLDL production in mice,” Journal of Clinical Investigation, vol. 120, no. 12, pp. 4410–4414, 2010. View at Publisher · View at Google Scholar · View at Scopus
  80. A. Varbo, M. Benn, A. Tybjærg-Hansen, P. Grande, and B. G. Nordestgaard, “TRIB1 and GCKR polymorphisms, lipid levels, and risk of ischemic heart disease in the general population,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 31, no. 2, pp. 451–457, 2011. View at Publisher · View at Google Scholar · View at Scopus
  81. J. C. Chambers, W. Zhang, J. Sehmi et al., “Genome-wide association study identifies loci influencing concentrations of liver enzymes in plasma,” Nature Genetics, vol. 43, no. 11, pp. 1131–1138, 2011. View at Publisher · View at Google Scholar · View at Scopus
  82. F. O. Martinez, L. Helming, and S. Gordon, “Alternative activation of macrophages: an immunologic functional perspective,” Annual Review of Immunology, vol. 27, pp. 451–483, 2009. View at Publisher · View at Google Scholar · View at Scopus
  83. S. K. Biswas and A. Mantovani, “Macrophage plasticity and interaction with lymphocyte subsets: cancer as a paradigm,” Nature Immunology, vol. 11, no. 10, pp. 889–896, 2010. View at Publisher · View at Google Scholar · View at Scopus
  84. C. D. Mills, “M1 and M2 macrophages: oracles of health and disease,” Critical Reviews in Immunology, vol. 32, no. 6, pp. 463–488, 2012. View at Google Scholar
  85. M. Yamamoto, S. Uematsu, T. Okamoto et al., “Enhanced TLR-mediated NF-IL6-dependent gene expression by Trib1 deficiency,” Journal of Experimental Medicine, vol. 204, no. 9, pp. 2233–2239, 2007. View at Publisher · View at Google Scholar · View at Scopus
  86. Y. H. Liu, K. A. Tan, I. W. Morrison, J. R. Lamb, and D. J. Argyle, “Macrophage migration is controlled by Tribbles 1 through the interaction between C/EBPbeta and TNF-alpha,” Veterinary Immunology and Immunopathology, vol. 155, no. 1-2, pp. 67–75, 2013. View at Google Scholar
  87. C. S. Marie, H. P. Verkerke, S. N. Paul, A. J. Mackey, and W. A. Petri Jr., “Leptin protects host cells from Entamoeba histolytica cytotoxicity by a STAT3-dependent mechanism,” Infection and Immunity, vol. 80, no. 5, pp. 1934–1943, 2012. View at Google Scholar
  88. O. Nov, A. Kohl, E. C. Lewis et al., “Interleukin-1β may mediate insulin resistance in liver-derived cells in response to adipocyte inflammation,” Endocrinology, vol. 151, no. 9, pp. 4247–4256, 2010. View at Publisher · View at Google Scholar · View at Scopus
  89. M. S. Wiedemann, S. Wueest, F. Item, E. J. Schoenle, and D. Konrad, “Adipose tissue inflammation contributes to short-term high-fat diet-induced hepatic insulin resistance,” The American Journal of Physiology, vol. 305, no. 3, pp. E388–E395, 2013. View at Google Scholar
  90. M. Takasato, K. Osafune, Y. Matsumoto et al., “Identification of kidney mesenchymal genes by a combination of microarray analysis and Sall1-GFP knockin mice,” Mechanisms of Development, vol. 121, no. 6, pp. 547–557, 2004. View at Publisher · View at Google Scholar · View at Scopus
  91. K.-R. Lin, S.-F. Lee, C.-M. Hung, C.-L. Li, H.-F. Yang-Yen, and J. J. Y. Yen, “Survival factor withdrawal-induced apoptosis of TF-1 cells involves a TRB2-Mcl-1 axis-dependent pathway,” Journal of Biological Chemistry, vol. 282, no. 30, pp. 21962–21972, 2007. View at Publisher · View at Google Scholar · View at Scopus
  92. K. Eder, H. Guan, H. Y. Sung et al., “Tribbles-2 is a novel regulator of inflammatory activation of monocytes,” International Immunology, vol. 20, no. 12, pp. 1543–1550, 2008. View at Publisher · View at Google Scholar · View at Scopus
  93. J. Deng, C. H. James, L. Patel et al., “Human tribbles homologue 2 is expressed in unstable regions of carotid plaques and regulates macrophage IL-10 in vitro,” Clinical Science, vol. 116, no. 3, pp. 241–248, 2009. View at Publisher · View at Google Scholar · View at Scopus
  94. C. H. Kuo, K. Morohoshi, C. C. Aye, R. B. Garoon, A. Collins, and S. J. Ono, “The role of TRB3 in mast cells sensitized with monomeric IgE,” Experimental and Molecular Pathology, vol. 93, no. 3, pp. 408–415, 2012. View at Google Scholar
  95. K. Du, S. Herzig, R. N. Kulkarni, and M. Montminy, “TRB3: a tribbles homolog that inhibits Akt/PKB activation by insulin in liver,” Science, vol. 300, no. 5625, pp. 1574–1577, 2003. View at Publisher · View at Google Scholar · View at Scopus
  96. S.-H. Koo, H. Satoh, S. Herzig et al., “PGC-1 promotes insulin resistance in liver through PPAR-α-dependent induction of TRB-3,” Nature Medicine, vol. 10, no. 5, pp. 530–534, 2004. View at Publisher · View at Google Scholar · View at Scopus
  97. P. B. Iynedjian, “Lack of evidence for a role of TRB3/NIPK as an inhibitor of PKB-mediated insulin signalling in primary hepatocytes,” Biochemical Journal, vol. 386, no. 1, pp. 113–118, 2005. View at Publisher · View at Google Scholar · View at Scopus
  98. R. Matsushima, N. Harada, N. J. G. Webster, Y. M. Tsutsumi, and Y. Nakaya, “Effect of TRB3 on insulin and nutrient-stimulated hepatic p70 S6 kinase activity,” Journal of Biological Chemistry, vol. 281, no. 40, pp. 29719–29729, 2006. View at Publisher · View at Google Scholar · View at Scopus
  99. J. Liu, W. Zhang, G. C. Chuang et al., “Role of TRIB3 in regulation of insulin sensitivity and nutrient metabolism during short-term fasting and nutrient excess,” The American Journal of Physiology, vol. 303, no. 7, pp. E908–E916, 2012. View at Google Scholar
  100. H.-J. Koh, D. E. Arnolds, N. Fujii et al., “Skeletal muscle-selective knockout of LKB1 increases insulin sensitivity, improves glucose homeostasis, and decreases TRB3,” Molecular and Cellular Biology, vol. 26, no. 22, pp. 8217–8227, 2006. View at Publisher · View at Google Scholar · View at Scopus
  101. A. R. Saltiel, “Putting the brakes on insulin signaling,” The New England Journal of Medicine, vol. 349, no. 26, pp. 2560–2562, 2003. View at Publisher · View at Google Scholar · View at Scopus
  102. X.-P. Bi, H.-W. Tan, S.-S. Xing et al., “Overexpression of TRB3 gene in adipose tissue of rats with high fructose-induced metabolic syndrome,” Endocrine Journal, vol. 55, no. 4, pp. 747–752, 2008. View at Publisher · View at Google Scholar · View at Scopus
  103. T. Örd, D. Örd, S. Kuuse, M. Plaas, and T. Örd, “Trib3 is regulated by IL-3 and affects bone marrow-derived mast cell survival and function,” Cellular Immunology, vol. 280, no. 1, pp. 68–75, 2012. View at Google Scholar
  104. Z.-H. Wang, Y.-Y. Shang, S. Zhang et al., “Silence of TRIB3 suppresses atherosclerosis and stabilizes plaques in diabetic ApoE -/- LDL receptor -/- mice,” Diabetes, vol. 61, no. 2, pp. 463–473, 2012. View at Publisher · View at Google Scholar · View at Scopus
  105. Y. Ti, G.-L. Xie, Z.-H. Wang et al., “TRB3 gene silencing alleviates diabetic cardiomyopathy in a type 2 diabetic rat model,” Diabetes, vol. 60, no. 11, pp. 2963–2974, 2011. View at Publisher · View at Google Scholar · View at Scopus
  106. J. Avery, S. Etzion, B. J. Debosch et al., “TRB3 function in cardiac endoplasmic reticulum stress,” Circulation Research, vol. 106, no. 9, pp. 1516–1523, 2010. View at Publisher · View at Google Scholar · View at Scopus
  107. M. Salazar, A. Carracedo, Í. J. Salanueva et al., “Cannabinoid action induces autophagy-mediated cell death through stimulation of ER stress in human glioma cells,” Journal of Clinical Investigation, vol. 119, no. 5, pp. 1359–1372, 2009. View at Publisher · View at Google Scholar · View at Scopus
  108. Y.-Y. Shang, Z.-H. Wang, L.-P. Zhang et al., “TRB3, upregulated by ox-LDL, mediates human monocyte-derived macrophage apoptosis,” FEBS Journal, vol. 276, no. 10, pp. 2752–2761, 2009. View at Publisher · View at Google Scholar · View at Scopus
  109. J. D. Cravero, C. S. Carlson, H.-J. Im, R. R. Yammani, D. Long, and R. F. Loeser, “Increased expression of the Akt/PKB inhibitor TRB3 in osteoarthritic chondrocytes inhibits insulin-like growth factor 1-mediated cell survival and proteoglycan synthesis,” Arthritis and Rheumatism, vol. 60, no. 2, pp. 492–500, 2009. View at Publisher · View at Google Scholar · View at Scopus
  110. D. Örd, K. Meerits, and T. Örd, “TRB3 protects cells against the growth inhibitory and cytotoxic effect of ATF4,” Experimental Cell Research, vol. 313, no. 16, pp. 3556–3567, 2007. View at Publisher · View at Google Scholar · View at Scopus
  111. R. Schwarzer, S. Dames, D. Tondera, A. Klippel, and J. Kaufmann, “TRB3 is a PI 3-kinase dependent indicator for nutrient starvation,” Cellular Signalling, vol. 18, no. 6, pp. 899–909, 2006. View at Publisher · View at Google Scholar · View at Scopus
  112. V. Foe, G. Odell, and B. Edgar, Eds., Mitosis and Morphogenesis in the Drosophila Embry: Point and Counter Point, Cold Spring Harbor Laboratory Press, New York, NY, USA, 1993.
  113. J. Pines and T. Hunter, “Isolation of a human cyclin cDNA: evidence for cyclin mRNA and protein regulation in the cell cycle and for interaction with p34(cdc2),” Cell, vol. 58, no. 5, pp. 833–846, 1989. View at Google Scholar · View at Scopus
  114. R. Boutros, V. Lobjois, and B. Ducommun, “CDC25 phosphatases in cancer cells: key players? Good targets?” Nature Reviews Cancer, vol. 7, no. 7, pp. 495–507, 2007. View at Publisher · View at Google Scholar · View at Scopus
  115. S. Sakai, N. Ohoka, K. Onozaki, M. Kitagawa, M. Nakanishi, and H. Hayashi, “Dual mode of regulation of cell division cycle 25 a protein by TRB3,” Biological and Pharmaceutical Bulletin, vol. 33, no. 7, pp. 1112–1116, 2010. View at Publisher · View at Google Scholar · View at Scopus
  116. E. Morse, E. Selim, and R. Cunard, “PPARα ligands cause lymphocyte depletion and cell cycle block and this is associated with augmented TRB3 and reduced Cyclin B1 expression,” Molecular Immunology, vol. 46, no. 16, pp. 3454–3461, 2009. View at Publisher · View at Google Scholar · View at Scopus
  117. T. Zou, W.-J. Liu, S.-D. Li, W. Zhou, J.-F. Yang, and C.-G. Zou, “TRB3 mediates homocysteine-induced inhibition of endothelial cell proliferation,” Journal of Cellular Physiology, vol. 226, no. 11, pp. 2782–2789, 2011. View at Publisher · View at Google Scholar · View at Scopus
  118. E. Kiss-Toth, D. H. Wyllie, K. Holland et al., “Functional mapping and identification of novel regulators for the Toll/Interleukin-1 signalling network by transcription expression cloning,” Cellular Signalling, vol. 18, no. 2, pp. 202–214, 2006. View at Publisher · View at Google Scholar · View at Scopus
  119. S. M. Smith, A. P. Moran, S. P. Duggan et al., “Tribbles 3: a novel regulator of TLR2-mediated signaling in response to Helicobacter pylori lipopolysaccharide,” Journal of Immunology, vol. 186, no. 4, pp. 2462–2471, 2011. View at Publisher · View at Google Scholar · View at Scopus
  120. C. Jousse, C. Deval, A.-C. Maurin et al., “TRB3 inhibits the transcriptional activation of stress-regulated genes by a negative feedback on the ATF4 pathway,” Journal of Biological Chemistry, vol. 282, no. 21, pp. 15851–15861, 2007. View at Publisher · View at Google Scholar · View at Scopus
  121. V. Carraro, A.-C. Maurin, S. Lambert-Langlais et al., “Amino acid availability controls TRB3 transcription in liver through the GCN2/EIF2a/ATF4 pathway,” PLoS ONE, vol. 5, no. 12, Article ID e15716, 2010. View at Publisher · View at Google Scholar · View at Scopus
  122. S. Z. Y. Wasef, K. A. Robinson, M. N. Berkaw, and M. G. Buse, “Glucose, dexamethasone, and the unfolded protein response regulate TRB3 mRNA expression in 3T3-L1 adipocytes and L6 myotubes,” The American Journal of Physiology, vol. 291, no. 6, pp. E1274–E1280, 2006. View at Publisher · View at Google Scholar · View at Scopus
  123. L. He, F. A. Simmen, H. M. Mehendale, M. J. J. Ronis, and T. M. Badger, “Chronic ethanol intake impairs insulin signaling in rats by disrupting Akt association with the cell membrane: role of TRB3 in inhibition of Akt/protein kinase B activation,” Journal of Biological Chemistry, vol. 281, no. 16, pp. 11126–11134, 2006. View at Publisher · View at Google Scholar · View at Scopus
  124. R. S. Seelan, A. Khalyfa, J. Lakshmanan, M. F. Casanova, and R. N. Parthasarathy, “Deciphering the lithium transcriptome: microarray profiling of lithium-modulated gene expression in human neuronal cells,” Neuroscience, vol. 151, no. 4, pp. 1184–1197, 2008. View at Publisher · View at Google Scholar · View at Scopus
  125. C. A. Corcoran, X. Luo, Q. He, C. Jiang, Y. Huang, and M. S. Sheikh, “Genotoxic and endoplasmic reticulum stresses differentially regulate TRB3 expression,” Cancer Biology and Therapy, vol. 4, no. 10, pp. 1063–1067, 2005. View at Google Scholar · View at Scopus
  126. X.-H. Yao and B. L. Grégoire Nyomba, “Hepatic insulin resistance induced by prenatal alcohol exposure is associated with reduced PTEN and TRB3 acetylation in adult rat offspring,” The American Journal of Physiology, vol. 294, no. 6, pp. R1797–R1806, 2008. View at Publisher · View at Google Scholar · View at Scopus
  127. M. Hanada, J. Feng, and B. A. Hemmings, “Structure, regulation and function of PKB/AKT: a major therapeutic target,” Biochimica et Biophysica Acta, vol. 1697, no. 1-2, pp. 3–16, 2004. View at Publisher · View at Google Scholar · View at Scopus
  128. D. D. Sarbassov, D. A. Guertin, S. M. Ali, and D. M. Sabatini, “Phosphorylation and regulation of Akt/PKB by the rictor-mTOR complex,” Science, vol. 307, no. 5712, pp. 1098–1101, 2005. View at Publisher · View at Google Scholar · View at Scopus
  129. V. Facchinetti, W. Ouyang, H. Wei et al., “The mammalian target of rapamycin complex 2 controls folding and stability of Akt and protein kinase C,” EMBO Journal, vol. 27, no. 14, pp. 1932–1943, 2008. View at Publisher · View at Google Scholar · View at Scopus
  130. D. Feliers, S. Duraisamy, J. L. Faulkner et al., “Activation of renal signaling pathways in db/db mice with type 2 diabetes,” Kidney International, vol. 60, no. 2, pp. 495–504, 2001. View at Publisher · View at Google Scholar · View at Scopus
  131. Y. Gorin, K. Block, J. Hernandez et al., “Nox4 NAD(P)H oxidase mediates hypertrophy and fibronectin expression in the diabetic kidney,” Journal of Biological Chemistry, vol. 280, no. 47, pp. 39616–39626, 2005. View at Publisher · View at Google Scholar · View at Scopus
  132. N. Lloberas, J. M. Cruzado, M. Franquesa et al., “Mammalian target of rapamycin pathway blockade slows progression of diabetic kidney disease in rats,” Journal of the American Society of Nephrology, vol. 17, no. 5, pp. 1395–1404, 2006. View at Publisher · View at Google Scholar · View at Scopus
  133. Y. Gorin, N.-H. Kim, D. Feliers, B. Bhandari, G. G. Choudhury, and H. E. Abboud, “Angiotensin II activates Akt/protein kinase B by an arachidonic acid/redox-dependent pathway and independent of phosphoinositide 3-kinase,” The FASEB Journal, vol. 15, no. 11, pp. 1909–1920, 2001. View at Publisher · View at Google Scholar · View at Scopus
  134. K. Nagai, T. Matsubara, A. Mima et al., “Gas6 induces Akt/mTOR-mediated mesangial hypertrophy in diabetic nephropathy,” Kidney International, vol. 68, no. 2, pp. 552–561, 2005. View at Publisher · View at Google Scholar · View at Scopus
  135. S. Chen, S. Mukherjee, C. Chakraborty, and S. Chakrabarti, “High glucose-induced, endothelin-dependent fibronectin synthesis is mediated via NF-κB and AP-1,” The American Journal of Physiology, vol. 284, no. 2, pp. C263–C272, 2003. View at Google Scholar · View at Scopus
  136. J. Zhu, N. Sun, L. Aoudjit et al., “Nephrin mediates actin reorganization via phosphoinositide 3-kinase in podocytes,” Kidney International, vol. 73, no. 5, pp. 556–566, 2008. View at Publisher · View at Google Scholar · View at Scopus
  137. T. Tejada, P. Catanuto, A. Ijaz et al., “Failure to phosphorylate AKT in podocytes from mice with early diabetic nephropathy promotes cell death,” Kidney International, vol. 73, no. 12, pp. 1385–1393, 2008. View at Publisher · View at Google Scholar · View at Scopus
  138. J. Vassiliadis, C. Bracken, D. Matthews, S. O'Brien, S. Schiavi, and S. Wawersik, “Calcium mediates glomerular filtration through calcineurin and mTORC2/Akt signaling,” Journal of the American Society of Nephrology, vol. 22, no. 8, pp. 1453–1461, 2011. View at Publisher · View at Google Scholar · View at Scopus
  139. S. K. Lim and S. H. Park, “The high glucose-induced stimulation of B1R and B2R expression via CB(1)R activation is involved in rat podocyte apoptosis,” Life Sciences, vol. 91, no. 19-20, pp. 895–906, 2012. View at Google Scholar
  140. Y. Takano, K. Yamauchi, K. Hayakawa et al., “Transcriptional suppression of nephrin in podocytes by macrophages: roles of inflammatory cytokines and involvement of the PI3K/Akt pathway,” FEBS Letters, vol. 581, no. 3, pp. 421–426, 2007. View at Publisher · View at Google Scholar · View at Scopus
  141. E. Jacinto, V. Facchinetti, D. Liu et al., “SIN1/MIP1 maintains rictor-mTOR complex integrity and regulates Akt phosphorylation and substrate specificity,” Cell, vol. 127, no. 1, pp. 125–137, 2006. View at Publisher · View at Google Scholar · View at Scopus
  142. S.-X. Tan, Y. Ng, C. C. Meoli et al., “Amplification and demultiplexing in insulin-regulated Akt protein kinase pathway in adipocytes,” Journal of Biological Chemistry, vol. 287, no. 9, pp. 6128–6138, 2012. View at Publisher · View at Google Scholar · View at Scopus
  143. J. Ding, S. Kato, and K. Du, “PI3K activates negative and positive signals to regulate TRB3 expression in hepatic cells,” Experimental Cell Research, vol. 314, no. 7, pp. 1566–1574, 2008. View at Publisher · View at Google Scholar · View at Scopus
  144. K. K. Y. Cheng, M. A. Iglesias, K. S. L. Lam et al., “APPL1 potentiates insulin-mediated inhibition of hepatic glucose production and alleviates diabetes via Akt activation in mice,” Cell Metabolism, vol. 9, no. 5, pp. 417–427, 2009. View at Publisher · View at Google Scholar · View at Scopus
  145. E. A. Borsting, S. Patel, A. E. Declèves et al., “TRB3, an endoplasmic reticulum stress-associated protein, binds to rictor and attenuates mTORC2 signaling and inflammation in the diabetic kidney,” In Review.
  146. M. Salazar, M. Lorente, E. Garcia-Taboada et al., “The pseudokinase tribbles homologue-3 plays a crucial role in cannabinoid anticancer action,” Biochimica et Biophysica Acta, vol. 1831, no. 10, pp. 1573–1578, 2013. View at Google Scholar
  147. D. Accili and K. C. Arden, “FoxOs at the crossroads of cellular metabolism, differentiation, and transformation,” Cell, vol. 117, no. 4, pp. 421–426, 2004. View at Publisher · View at Google Scholar · View at Scopus
  148. G. Rena, G. Shaodong, S. C. Cichy, T. G. Unterman, and P. Cohen, “Phosphorylation of the transcription factor forkhead family member FKHR by protein kinase B,” Journal of Biological Chemistry, vol. 274, no. 24, pp. 17179–17183, 1999. View at Publisher · View at Google Scholar · View at Scopus
  149. H. Matsuzaki, H. Daitoku, M. Hatta, K. Tanaka, and A. Fukamizu, “Insulin-induced phosphorylation of FKHR (Foxo1) targets to proteasomal degradation,” Proceedings of the National Academy of Sciences of the United States of America, vol. 100, no. 20, pp. 11285–11290, 2003. View at Publisher · View at Google Scholar · View at Scopus
  150. G. Tzivion, M. Dobson, and G. Ramakrishnan, “FoxO transcription factors: regulation by AKT and 14-3-3 proteins,” Biochimica et Biophysica Acta, vol. 1813, no. 11, pp. 1938–1945, 2011. View at Publisher · View at Google Scholar · View at Scopus
  151. K. B. Grandinetti, T. A. Stevens, S. Ha et al., “Overexpression of TRIB2 in human lung cancers contributes to tumorigenesis through downregulation of C/EBPα,” Oncogene, vol. 30, no. 30, pp. 3328–3335, 2011. View at Publisher · View at Google Scholar · View at Scopus
  152. T. Rzymski, A. Paantjens, J. Bod, and A. L. Harris, “Multiple pathways are involved in the anoxia response of SKIP3 including HuR-regulated RNA stability, NF-κB and ATF4,” Oncogene, vol. 27, no. 33, pp. 4532–4543, 2008. View at Publisher · View at Google Scholar · View at Scopus
  153. F. Hua, R. Mu, J. Liu et al., “TRB3 interacts with SMAD3 promoting tumor cell migration and invasion,” Journal of Cell Science, vol. 124, no. 19, pp. 3235–3246, 2011. View at Publisher · View at Google Scholar · View at Scopus
  154. J. Xu, S. Lv, Y. Qin et al., “TRB3 interacts with CtIP and is overexpressed in certain cancers,” Biochimica et Biophysica Acta, vol. 1770, no. 2, pp. 273–278, 2007. View at Publisher · View at Google Scholar · View at Scopus
  155. Y. Sirin and K. Susztak, “Notch in the kidney: development and disease,” Journal of Pathology, vol. 226, no. 2, pp. 394–403, 2012. View at Publisher · View at Google Scholar · View at Scopus
  156. J. Izrailit, H. K. Berman, A. Datti, J. L. Wrana, and M. Reedijk, “High throughput kinase inhibitor screens reveal TRB3 and MAPK-ERK/TGFbeta pathways as fundamental Notch regulators in breast cancer,” Proceedings of the National Academy of Sciences of the United States of America, vol. 110, no. 5, pp. 1714–1719, 2013. View at Google Scholar
  157. H. Zhou, Y. Luo, J. H. Chen et al., “Knockdown of TRB3 induces apoptosis in human lung adenocarcinoma cells through regulation of Notch 1 expression,” Molecular Medicine Reports, vol. 8, no. 1, pp. 47–52, 2013. View at Google Scholar
  158. M. Wennemers, J. Bussink, N. Grebenchtchikov, F. C. G. J. Sweep, and P. N. Span, “TRIB3 protein denotes a good prognosis in breast cancer patients and is associated with hypoxia sensitivity,” Radiotherapy and Oncology, vol. 101, no. 1, pp. 198–202, 2011. View at Publisher · View at Google Scholar · View at Scopus
  159. M. Wennemers, J. Bussink, B. Scheijen et al., “Tribbles homolog 3 denotes a poor prognosis in breast cancer and is involved in hypoxia response,” Breast Cancer Research, vol. 13, no. 4, article R82, 2011. View at Publisher · View at Google Scholar · View at Scopus
  160. M. Wennemers, J. Bussink, T. van den Beucken, F. C. Sweep, and P. N. Span, “Regulation of TRIB3 mRNA and protein in breast cancer,” PLoS ONE, vol. 7, no. 11, Article ID e49439, 2012. View at Google Scholar
  161. N. Miyoshi, H. Ishii, K. Mimori et al., “Abnormal expression of TRIB3 in colorectal cancer: a novel marker for prognosis,” British Journal of Cancer, vol. 101, no. 10, pp. 1664–1670, 2009. View at Publisher · View at Google Scholar · View at Scopus
  162. D. Vara, M. Salazar, N. Olea-Herrero, M. Guzmán, G. Velasco, and I. Díaz-Laviada, “Anti-tumoral action of cannabinoids on hepatocellular carcinoma: role of AMPK-dependent activation of autophagy,” Cell Death and Differentiation, vol. 18, no. 7, pp. 1099–1111, 2011. View at Publisher · View at Google Scholar · View at Scopus
  163. N. Lampiasi, A. Azzolina, N. D'Alessandro et al., “Antitumor effects of dehydroxymethylepoxyquinomicin, a novel nuclear factor-κB inhibitor, in human liver cancer cells are mediated through a reactive oxygen species-dependent mechanism,” Molecular Pharmacology, vol. 76, no. 2, pp. 290–300, 2009. View at Publisher · View at Google Scholar · View at Scopus
  164. M. M. Aynaud, R. Suspene, P. O. Vidalain et al., “Human Tribbles 3 protects nuclear DNA from cytidine deamination by APOBEC3A,” Journal of Biological Chemistry, vol. 287, no. 46, pp. 39182–39192, 2012. View at Google Scholar
  165. B. Röthlisberger, M. Heizmann, M. J. Bargetzi, and A. R. Huber, “TRIB1 overexpression in acute myeloid leukemia,” Cancer Genetics and Cytogenetics, vol. 176, no. 1, pp. 58–60, 2007. View at Publisher · View at Google Scholar · View at Scopus
  166. G. Jin, Y. Yamazaki, M. Takuwa et al., “Trib1 and Evi1 cooperate with Hoxa and Meis1 in myeloid leukemogenesis,” Blood, vol. 109, no. 9, pp. 3998–4005, 2007. View at Publisher · View at Google Scholar · View at Scopus
  167. T. Yokoyama, T. Toki, Y. Aoki et al., “Identification of TRIB1 R107L gain-of-function mutation in human acute megakaryocytic leukemia,” Blood, vol. 119, no. 11, pp. 2608–2611, 2012. View at Publisher · View at Google Scholar · View at Scopus
  168. D. C. Gilby, H. Y. Sung, P. R. Winship, A. C. Goodeve, J. T. Reilly, and E. Kiss-Toth, “Tribbles-1 and -2 are tumour suppressors, down-regulated in human acute myeloid leukaemia,” Immunology Letters, vol. 130, no. 1-2, pp. 115–124, 2010. View at Publisher · View at Google Scholar · View at Scopus
  169. M. M. Hannon, F. Lohan, Y. Erbilgin et al., “Elevated TRIB2 with NOTCH1 activation in paediatric/adult TALL,” British Journal of Haematology, vol. 158, no. 5, pp. 626–634, 2012. View at Google Scholar
  170. P. Johansson, L. Eisele, L. Klein-Hitpass et al., “Percentage of smudge cells determined on routine blood smears is a novel prognostic factor in chronic lymphocytic leukemia,” Leukemia Research, vol. 34, no. 7, pp. 892–898, 2010. View at Publisher · View at Google Scholar · View at Scopus
  171. K. L. Liang, L. Rishi, and K. Keeshan, “Tribbles in acute leukemia,” Blood, vol. 121, no. 21, pp. 4265–4270, 2013. View at Google Scholar
  172. L. G. Puskas, F. Juhasz, A. Zarva, L. Hackler Jr., and N. R. Farid, “Gene profiling identifies genes specific for well-differentiated epithelial thyroid tumors,” Cellular and Molecular Biology, vol. 51, no. 2, pp. 177–186, 2005. View at Google Scholar · View at Scopus
  173. M.-L. Puiffe, C. le Page, A. Filali-Mouhim et al., “Characterization of ovarian cancer ascites on cell invasion, proliferation, spheroid formation, and gene expression in an in vitro model of epithelial ovarian cancer,” Neoplasia, vol. 9, no. 10, pp. 820–829, 2007. View at Publisher · View at Google Scholar · View at Scopus
  174. E. Puigdecanet, B. Espinet, J. J. Lozano et al., “Gene expression profiling distinguishes JAK2V617F-negative from JAK2V617F-positive patients in essential thrombocythemia,” Leukemia, vol. 22, no. 7, pp. 1368–1376, 2008. View at Publisher · View at Google Scholar · View at Scopus
  175. J. Wang, J. S. Park, Y. Wei et al., “TRIB2 acts downstream of Wnt/TCF in liver cancer cells to regulate YAP and C/EBPalpha function,” Molecular Cell, vol. 51, no. 2, pp. 211–225, 2013. View at Google Scholar
  176. S. Prudente, M. L. Hribal, E. Flex et al., “The functional Q84R polymorphism of mammalian tribbles homolog TRB3 is associated with insulin resistance and related cardiovascular risk in Caucasians from Italy,” Diabetes, vol. 54, no. 9, pp. 2807–2811, 2005. View at Publisher · View at Google Scholar · View at Scopus
  177. H.-P. Gong, Z.-H. Wang, H. Jiang et al., “TRIB3 functional Q84R polymorphism is a risk factor for metabolic syndrome and carotid atherosclerosis,” Diabetes Care, vol. 32, no. 7, pp. 1311–1313, 2009. View at Publisher · View at Google Scholar · View at Scopus
  178. G. Formoso, P. di Tomo, F. Andreozzi et al., “The TRIB3 R84 variant is associated with increased carotid intimamedia thickness in vivo and with enhanced MAPK signalling in human endothelial cells,” Cardiovascular Research, vol. 89, no. 1, pp. 184–192, 2011. View at Publisher · View at Google Scholar · View at Scopus
  179. F. Andreozzi, G. Formoso, S. Prudente et al., “TRIB3 R84 variant is associated with impaired insulin-mediated nitric oxide production in human endothelial cells,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 28, no. 7, pp. 1355–1360, 2008. View at Publisher · View at Google Scholar · View at Scopus
  180. S. Prudente, G. Sesti, A. Pandolfi, F. Andreozzi, A. Consoli, and V. Trischitta, “The mammalian tribbles homolog TRIB3, glucose homeostasis, and cardiovascular diseases,” Endocrine Reviews, vol. 33, no. 4, pp. 526–546, 2012. View at Google Scholar
  181. H. Oberkofler, A. Pfeifenberger, S. Soyal et al., “Aberrant hepatic TRIB3 gene expression in insulin-resistant obese humans,” Diabetologia, vol. 53, no. 9, pp. 1971–1975, 2010. View at Publisher · View at Google Scholar · View at Scopus
  182. I. Kouroumichakis, N. Papanas, P. Zarogoulidis, V. Liakopoulos, E. Maltezos, and D. P. Mikhailidis, “Fibrates: therapeutic potential for diabetic nephropathy?” European Journal of Internal Medicine, vol. 23, no. 4, pp. 309–316, 2012. View at Publisher · View at Google Scholar · View at Scopus
  183. Z. Varghese, J. F. Moorhead, and X. Z. Ruan, “The PPARα ligand fenofibrate: meeting multiple targets in diabetic nephropathy,” Kidney International, vol. 69, no. 9, pp. 1490–1491, 2006. View at Publisher · View at Google Scholar · View at Scopus
  184. C. W. Park, Y. Zhang, X. Zhang et al., “PPARα agonist fenofibrate improves diabetic nephropathy in db/db mic,” Kidney International, vol. 69, no. 9, pp. 1511–1517, 2006. View at Publisher · View at Google Scholar · View at Scopus
  185. I. Shirinsky, O. Polovnikova, N. Kalinovskaya, and V. Shirinsky, “The effects of fenofibrate on inflammation and cardiovascular markers in patients with active rheumatoid arthritis: a pilot study,” Rheumatology International, vol. 33, no. 12, pp. 3045–3048, 2013. View at Google Scholar
  186. H. M. Ollila, S. Utge, E. Kronholm et al., “TRIB1 constitutes a molecular link between regulation of sleep and lipid metabolism in humans,” Translational Psychiatry, vol. 2, article e97, 2012. View at Publisher · View at Google Scholar · View at Scopus
  187. E. A. Lucassen, K. I. Rother, and G. Cizza, “Interacting epidemics? Sleep curtailment, insulin resistance, and obesity,” Annals of the New York Academy of Sciences, vol. 1264, no. 1, pp. 110–134, 2012. View at Google Scholar
  188. Y. Zhang, J. L. Davis, and W. Li, “Identification of tribbles homolog 2 as an autoantigen in autoimmune uveitis by phage display,” Molecular Immunology, vol. 42, no. 11, pp. 1275–1281, 2005. View at Publisher · View at Google Scholar · View at Scopus
  189. V. Cvetkovic-Lopes, L. Bayer, S. Dorsaz et al., “Elevated Tribbles homolog 2-specific antibody levels in narcolepsy patients,” Journal of Clinical Investigation, vol. 120, no. 3, pp. 713–719, 2010. View at Publisher · View at Google Scholar · View at Scopus
  190. M. Kawashima, L. Lin, S. Tanaka et al., “Anti-tribbles homolog 2 (TRIB2) autoantibodies in narcolepsy are associated with recent onset of cataplexy,” Sleep, vol. 33, no. 7, pp. 869–874, 2010. View at Google Scholar · View at Scopus
  191. H. Toyoda, S. Tanaka, T. Miyagawa, Y. Honda, K. Tokunaga, and M. Honda, “Anti-tribbles homolog 2 autoantibodies in Japanese patients with narcolepsy,” Sleep, vol. 33, no. 7, pp. 875–878, 2010. View at Google Scholar · View at Scopus
  192. A. Katzav, M. T. Arango, S. Kivity et al., “Passive transfer of narcolepsy: anti-TRIB2 autoantibody positive patient IgG causes hypothalamic orexin neuron loss and sleep attacks in mice,” Journal of Autoimmunity, vol. 45, pp. 24–30, 2013. View at Google Scholar
  193. S.-C. Wei, I. M. Rosenberg, Z. Cao, A. S. Huett, R. J. Xavier, and D. K. Podolsky, “Tribbles 2 (Trib2) is a novel regulator of toll-like receptor 5 signaling,” Inflammatory Bowel Diseases, vol. 18, no. 5, pp. 877–888, 2012. View at Publisher · View at Google Scholar · View at Scopus
  194. Y. Kozutsumi, M. Segal, K. Normington, M.-J. Gething, and J. Sambrook, “The presence of malfolded proteins in the endoplasmic reticulum signals the induction of glucose-regulated proteins,” Nature, vol. 332, no. 6163, pp. 462–464, 1988. View at Google Scholar · View at Scopus
  195. J. S. Cox, C. E. Shamu, and P. Walter, “Transcriptional induction of genes encoding endoplasmic reticulum resident proteins requires a transmembrane protein kinase,” Cell, vol. 73, no. 6, pp. 1197–1206, 1993. View at Publisher · View at Google Scholar · View at Scopus
  196. J. S. Cox, R. E. Chapman, and P. Walter, “The unfolded protein response coordinates the production of endoplasmic reticulum protein and endoplasmic reticulum membrane,” Molecular Biology of the Cell, vol. 8, no. 9, pp. 1805–1814, 1997. View at Google Scholar · View at Scopus
  197. M. Matsumoto, M. Minami, K. Takeda, Y. Sakao, and S. Akira, “Ectopic expression of CHOP (GADD153) induces apoptosis in M1 myeloblastic leukemia cells,” FEBS Letters, vol. 395, no. 2-3, pp. 143–147, 1996. View at Publisher · View at Google Scholar · View at Scopus
  198. H. Zinszner, M. Kuroda, X. Wang et al., “CHOP is implicated in programmed cell death in response to impaired function of the endoplasmic reticulum,” Genes and Development, vol. 12, no. 7, pp. 982–995, 1998. View at Google Scholar · View at Scopus
  199. C. Xu, B. Bailly-Maitre, and J. C. Reed, “Endoplasmic reticulum stress: cell life and death decisions,” Journal of Clinical Investigation, vol. 115, no. 10, pp. 2656–2664, 2005. View at Publisher · View at Google Scholar · View at Scopus
  200. R. Cunard and K. Sharma, “The endoplasmic reticulum stress response and diabetic kidney disease,” The American Journal of Physiology, vol. 300, no. 5, pp. 1054–1061, 2011. View at Publisher · View at Google Scholar · View at Scopus
  201. K. Kimura, H. Jin, M. Ogawa, and T. Aoe, “Dysfunction of the ER chaperone BiP accelerates the renal tubular injury,” Biochemical and Biophysical Research Communications, vol. 366, no. 4, pp. 1048–1053, 2008. View at Publisher · View at Google Scholar · View at Scopus
  202. V. Esposito, F. Grosjean, J. Tan et al., “CHOP deficiency results in elevated lipopolysaccharide-induced inflammation and kidney injury,” The American Journal of Physiology, vol. 304, no. 4, pp. F440–F450, 2013. View at Google Scholar
  203. M. Peyrou, P. E. Hanna, and A. E. Cribb, “Cisplatin, gentamicin, and p-aminophenol induce markers of endoplasmic reticulum stress in the rat kidneys,” Toxicological Sciences, vol. 99, no. 1, pp. 346–353, 2007. View at Publisher · View at Google Scholar · View at Scopus
  204. D. Kong, L. Zhuo, C. Gao et al., “Erythropoietin protects against cisplatin-induced nephrotoxicity by attenuating endoplasmic reticulum stress-induced apoptosis,” Journal of Nephrology, vol. 26, no. 1, pp. 219–227, 2013. View at Google Scholar
  205. X. Gao, L. Fu, M. Xiao et al., “The nephroprotective effect of tauroursodeoxycholic acid on ischaemia/reperfusion-induced acute kidney injury by inhibiting endoplasmic reticulum stress,” Basic and Clinical Pharmacology and Toxicology, vol. 111, no. 1, pp. 4–23, 2012. View at Publisher · View at Google Scholar · View at Scopus
  206. Y. Bando, Y. Tsukamoto, T. Katayama et al., “ORP150/HSP12A protects renal tubular epithelium from ischemia-induced cell death,” The FASEB Journal, vol. 18, no. 12, pp. 1401–1403, 2004. View at Publisher · View at Google Scholar · View at Scopus
  207. Z.-F. Luo, B. Feng, J. Mu et al., “Effects of 4-phenylbutyric acid on the process and development of diabetic nephropathy induced in rats by streptozotocin: regulation of endoplasmic reticulum stress-oxidative activation,” Toxicology and Applied Pharmacology, vol. 246, no. 1-2, pp. 49–57, 2010. View at Publisher · View at Google Scholar · View at Scopus
  208. A. V. Cybulsky, T. Takano, J. Papillon, and K. Bijian, “Role of the endoplasmic reticulum unfolded protein response in glomerular epithelial cell injury,” Journal of Biological Chemistry, vol. 280, no. 26, pp. 24396–24403, 2005. View at Publisher · View at Google Scholar · View at Scopus
  209. E. J. Brown, M. W. Albers, T. B. S. Tae Bum Shin et al., “A mammalian protein targeted by G1-arresting rapamycin-receptor complex,” Nature, vol. 369, no. 6483, pp. 756–758, 1994. View at Publisher · View at Google Scholar · View at Scopus
  210. M. I. Chiu, H. Katz, and V. Berlin, “RAPT1, a mammalian homolog of yeast Tor, interacts with the FKBP12/rapamycin complex,” Proceedings of the National Academy of Sciences of the United States of America, vol. 91, no. 26, pp. 12574–12578, 1994. View at Publisher · View at Google Scholar · View at Scopus
  211. D. M. Sabatini, H. Erdjument-Bromage, M. Lui, P. Tempst, and S. H. Snyder, “RAFT1: a mammalian protein that binds to FKBP12 in a rapamycin-dependent fashion and is homologous to yeast TORs,” Cell, vol. 78, no. 1, pp. 35–43, 1994. View at Publisher · View at Google Scholar · View at Scopus
  212. W. Lieberthal and J. S. Levine, “Mammalian target of rapamycin and the kidney. II: pathophysiology and therapeutic implications,” The American Journal of Physiology, vol. 303, no. 2, pp. F180–F191, 2012. View at Google Scholar
  213. D. P. Cinà, T. Onay, A. Paltoo et al., “Inhibition of MTOR disrupts autophagic flux in podocytes,” Journal of the American Society of Nephrology, vol. 23, no. 3, pp. 412–420, 2012. View at Publisher · View at Google Scholar · View at Scopus
  214. M. Gödel, B. Hartleben, N. Herbach et al., “Role of mTOR in podocyte function and diabetic nephropathy in humans and mice,” Journal of Clinical Investigation, vol. 121, no. 6, pp. 2197–2209, 2011. View at Publisher · View at Google Scholar · View at Scopus
  215. N. Cybulski and M. N. Hall, “TOR complex 2: a signaling pathway of its own,” Trends in Biochemical Sciences, vol. 34, no. 12, pp. 620–627, 2009. View at Publisher · View at Google Scholar · View at Scopus
  216. E. Jacinto, R. Loewith, A. Schmidt et al., “Mammalian TOR complex 2 controls the actin cytoskeleton and is rapamycin insensitive,” Nature Cell Biology, vol. 6, no. 11, pp. 1122–1128, 2004. View at Publisher · View at Google Scholar · View at Scopus
  217. V. A. Stevens, S. Saad, X.-M. Chen, and C. A. Pollock, “The interdependence of EGF-R and SGK-1 in fibronectin expression in primary kidney cortical fibroblast cells,” International Journal of Biochemistry and Cell Biology, vol. 39, no. 5, pp. 1047–1054, 2007. View at Publisher · View at Google Scholar · View at Scopus
  218. M. Lu, J. Wang, K. T. Jones et al., “mTOR complex-2 activates ENaC by phosphorylating SGK1,” Journal of the American Society of Nephrology, vol. 21, no. 5, pp. 811–818, 2010. View at Publisher · View at Google Scholar · View at Scopus
  219. B. Vollenbröker, B. George, M. Wolfgart, M. A. Saleem, H. Pavenstädt, and T. Weide, “mTOR regulates expression of slit diaphragm proteins and cytoskeleton structure in podocytes,” The American Journal of Physiology, vol. 296, no. 2, pp. F418–F426, 2009. View at Publisher · View at Google Scholar · View at Scopus
  220. D. Mascarenhas, S. Routt, and B. K. Singh, “Mammalian target of rapamycin complex 2 regulates inflammatory response to stress,” Inflammation Research, vol. 61, no. 12, pp. 1395–1404, 2012. View at Google Scholar
  221. W. Fan, K. Cheng, X. Qin et al., “mTORC1 and mTORC2 play different roles in the functional survival of transplanted adipose-derived stromal cells in hind limb ischemic mice via regulating inflammation in vivo,” Stem Cells, vol. 31, no. 1, pp. 203–214, 2013. View at Google Scholar
  222. T. B. Huber, C. L. Edelstein, B. Hartleben et al., “Emerging role of autophagy in kidney function, diseases and aging,” Autophagy, vol. 8, no. 7, 2012. View at Google Scholar
  223. Y. Tanaka, S. Kume, M. Kitada et al., “Autophagy as a therapeutic target in diabetic nephropathy,” Experimental Diabetes Research, vol. 2012, Article ID 628978, 2012. View at Publisher · View at Google Scholar · View at Scopus
  224. B. Hartleben, M. Gödel, C. Meyer-Schwesinger et al., “Autophagy influences glomerular disease susceptibility and maintains podocyte homeostasis in aging mice,” Journal of Clinical Investigation, vol. 120, no. 4, pp. 1084–1096, 2010. View at Publisher · View at Google Scholar · View at Scopus
  225. S. Miranda, Á. González-Rodríguez, M. García-Ramírez et al., “Beneficial effects of fenofibrate in retinal pigment epithelium by the modulation of stress and survival signaling under diabetic conditions,” Journal of Cellular Physiology, vol. 227, no. 6, pp. 2352–2362, 2012. View at Publisher · View at Google Scholar · View at Scopus
  226. C. Appenzeller-Herzog and M. N. Hall, “Bidirectional crosstalk between endoplasmic reticulum stress and mTOR signaling,” Trends in Cell Biology, vol. 22, no. 5, pp. 274–282, 2012. View at Publisher · View at Google Scholar · View at Scopus
  227. W.-X. Ding, H.-M. Ni, W. Gao et al., “Differential effects of endoplasmic reticulum stress-induced autophagy on cell survival,” Journal of Biological Chemistry, vol. 282, no. 7, pp. 4702–4710, 2007. View at Publisher · View at Google Scholar · View at Scopus
  228. M. Høyer-Hansen and M. Jäättelä, “Connecting endoplasmic reticulum stress to autophagy by unfolded protein response and calcium,” Cell Death and Differentiation, vol. 14, no. 9, pp. 1576–1582, 2007. View at Publisher · View at Google Scholar · View at Scopus
  229. M. Ogata, S.-I. Hino, A. Saito et al., “Autophagy is activated for cell survival after endoplasmic reticulum stress,” Molecular and Cellular Biology, vol. 26, no. 24, pp. 9220–9231, 2006. View at Publisher · View at Google Scholar · View at Scopus
  230. G. Velasco, T. Verfaillie, M. Salazar, and P. Agostinis, “Linking ER stress to autophagy: potential implications for cancer therapy,” International Journal of Cell Biology, vol. 2010, Article ID 930509, 19 pages, 2010. View at Publisher · View at Google Scholar · View at Scopus
  231. Y. Wei, S. Pattingre, S. Sinha, M. Bassik, and B. Levine, “JNK1-mediated phosphorylation of Bcl-2 regulates starvation-induced autophagy,” Molecular Cell, vol. 30, no. 6, pp. 678–688, 2008. View at Publisher · View at Google Scholar · View at Scopus
  232. Y. Kouroku, E. Fujita, I. Tanida et al., “ER stress (PERK/eIF2α phosphorylation) mediates the polyglutamine-induced LC3 conversion, an essential step for autophagy formation,” Cell Death and Differentiation, vol. 14, no. 2, pp. 230–239, 2007. View at Publisher · View at Google Scholar · View at Scopus
  233. E. Kiss-Toth, “Tribbles: “puzzling” regulators of cell signalling,” Biochemical Society Transactions, vol. 39, no. 2, pp. 684–687, 2011. View at Publisher · View at Google Scholar · View at Scopus
  234. L. E. White and H. T. Hassoun, “Inflammatory mechanisms of organ crosstalk during ischemic acute kidney injury,” International Journal of Nephrology, vol. 2012, Article ID 505197, 8 pages, 2012. View at Publisher · View at Google Scholar