Table of Contents Author Guidelines Submit a Manuscript
Scientifica
Volume 2014 (2014), Article ID 394270, 15 pages
http://dx.doi.org/10.1155/2014/394270
Review Article

Volatile Anaesthetic Depression of the Carotid Body Chemoreflex-Mediated Ventilatory Response to Hypoxia: Directions for Future Research

Nuffield Department of Anaesthetics, John Radcliffe Hospital, Oxford OX3 9DU, UK

Received 22 December 2013; Accepted 6 March 2014; Published 6 April 2014

Academic Editors: K. M. Ho, P. M. Lalley, and A. Vanin

Copyright © 2014 J. J. Pandit. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. T. M. Cook, N. Woodall, J. Harper, and J. Benger, “Major complications of airway management in the UK: results of the Fourth National Audit Project of the Royal College of Anaesthetists and the Difficult Airway Society. Part 2: intensive care and emergency departments,” British Journal of Anaesthesia, vol. 106, no. 5, pp. 632–642, 2011. View at Publisher · View at Google Scholar · View at Scopus
  2. P. S. Myles, K. Leslie, M. T. V. Chan et al., “Avoidance of nitrous oxide for patients undergoing major surgery: a randomized controlled trial,” Anesthesiology, vol. 107, no. 2, pp. 221–231, 2007. View at Publisher · View at Google Scholar · View at Scopus
  3. R. Hines, P. G. Barash, G. Watrous, and T. O'Connor, “Complications occurring in the postanesthesia care unit: a survey,” Anesthesia and Analgesia, vol. 74, no. 4, pp. 503–509, 1992. View at Google Scholar · View at Scopus
  4. G. Lockwood, “Theoretical context-sensitive elimination times for inhalation anaesthetics,” British Journal of Anaesthesia, vol. 104, no. 5, pp. 648–655, 2010. View at Publisher · View at Google Scholar · View at Scopus
  5. A. W. Gelb and R. L. Knill, “Subanaesthetic halothane: its effect on regulation of ventilation and relevance to the recovery room,” Canadian Anaesthetists Society Journal, vol. 25, no. 6, pp. 488–494, 1978. View at Google Scholar · View at Scopus
  6. R. L. Knill and A. W. Gelb, “Ventilatory responses to hypoxia and hypercapnia during halothane sedation and anesthesia in man,” Anesthesiology, vol. 49, no. 4, pp. 244–251, 1978. View at Google Scholar · View at Scopus
  7. R. L. Knill, P. H. Manninen, and J. L. Clement, “Ventilation and chemoreflexes during enflurane sedation and anaesthesia in man,” Canadian Anaesthetists Society Journal, vol. 26, no. 5, pp. 353–360, 1979. View at Google Scholar · View at Scopus
  8. R. L. Knill and J. L. Clement, “Site of selective action of halothane on the peripheral chemoreflex pathway in humans,” Anesthesiology, vol. 61, no. 2, pp. 121–126, 1984. View at Google Scholar · View at Scopus
  9. J. J. Pandit, “The variable effect of low-dose volatile anaesthetics on the acute ventilatory response to hypoxia in humans: a quantitative review,” Anaesthesia, vol. 57, no. 7, pp. 632–643, 2002. View at Publisher · View at Google Scholar · View at Scopus
  10. J. J. Pandit, J. Manning-Fox, K. L. Dorrington, and P. A. Robbins, “Effects of subanaesthetic sevoflurane on ventilation. 2: response to acute and sustained hypoxia in humans,” British Journal of Anaesthesia, vol. 83, no. 2, pp. 210–216, 1999. View at Google Scholar · View at Scopus
  11. J. J. Pandit, B. Moreau, S. Donoghue, and P. A. Robbins, “Effect of pain and audiovisual stimulation on the depression of acute hypoxic ventilatory response by low-dose halothane in humans,” Anesthesiology, vol. 101, no. 6, pp. 1409–1416, 2004. View at Google Scholar · View at Scopus
  12. M. van den Elsen, A. Dahan, J. DeGoede, A. Berkenbosch, and J. van Kleef, “Influences of subanesthetic isoflurane on ventilatory control in humans,” Anesthesiology, vol. 83, no. 3, pp. 478–490, 1995. View at Publisher · View at Google Scholar · View at Scopus
  13. R. L. Knill, H. T. Kieraszewicz, B. G. Dodgson, and J. L. Clement, “Chemical regulation of ventilation during isoflurane sedation and anaesthesia in humans,” Canadian Anaesthetists Society Journal, vol. 30, no. 6, pp. 607–614, 1983. View at Google Scholar · View at Scopus
  14. R. L. Knill and J. L. Clement, “Ventilatory responses to acute metabolic acidemia in humans awake, sedated, and anesthetized with halothane,” Anesthesiology, vol. 62, no. 6, pp. 745–753, 1985. View at Google Scholar · View at Scopus
  15. N. R. Prabhakar, “O2 sensing at the mammalian carotid body: why multiple O2 sensors and multiple transmitters?” Experimental Physiology, vol. 91, no. 1, pp. 17–23, 2006. View at Publisher · View at Google Scholar · View at Scopus
  16. B. J. Whipp and K. Wasserman, “Carotid bodies and ventilatory control dynamics in man,” Federation Proceedings, vol. 39, no. 9, pp. 2668–2673, 1980. View at Google Scholar · View at Scopus
  17. A. Jackson and C. Nurse, “Plasticity in cultured carotid body chemoreceptors: environmental modulation of GAP-43 and neurofilament,” Journal of Neurobiology, vol. 26, no. 4, pp. 485–496, 1995. View at Publisher · View at Google Scholar · View at Scopus
  18. J. J. Pandit, “Effect of low dose inhaled anaesthetic agents on the ventilatory response to carbon dioxide in humans: a quantitative review,” Anaesthesia, vol. 60, no. 5, pp. 461–469, 2005. View at Publisher · View at Google Scholar · View at Scopus
  19. J. J. Pandit, J. Manning-Fox, K. L. Dorrington, and P. A. Robbins, “Effects of subanaesthetic sevoflurane on ventilation. 1: response to acute and sustained hypercapnia in humans,” British Journal of Anaesthesia, vol. 83, no. 2, pp. 204–209, 1999. View at Google Scholar · View at Scopus
  20. J. J. Pandit and B. Moreau, “Interaction of arousal states and low dose halothane on the acute hypercapnic ventilatory response in humans,” Anaesthesia, vol. 60, no. 2, pp. 139–145, 2005. View at Publisher · View at Google Scholar · View at Scopus
  21. K. J. Buckler, B. A. Williams, and E. Honore, “An oxygen-, acid- and anaesthetic-sensitive TASK-like background potassium channel in rat arterial chemoreceptor cells,” Journal of Physiology, vol. 525, no. 1, pp. 135–142, 2000. View at Google Scholar · View at Scopus
  22. L. I. Eriksson, “The effects of residual neuromuscular blockade and volatile anesthetics on the control of ventilation,” Anesthesia and Analgesia, vol. 89, no. 1, pp. 243–251, 1999. View at Publisher · View at Google Scholar · View at Scopus
  23. A. D. Oxman and G. H. Guyatt, “Validation of an index of the quality of review articles,” Journal of Clinical Epidemiology, vol. 44, no. 11, pp. 1271–1278, 1991. View at Publisher · View at Google Scholar · View at Scopus
  24. L. Manchikanti, J. E. Heavner, G. B. Racz et al., “Methods for evidence synthesis in interventional pain management,” Pain Physician, vol. 6, no. 1, pp. 89–111, 2003. View at Google Scholar · View at Scopus
  25. J. M. Bland and S. M. Kerry, “Statistics Notes: weighted comparison of means,” British Medical Journal, vol. 316, no. 7125, p. 129, 1998. View at Google Scholar · View at Scopus
  26. J. J. Pandit, “The analysis of variance in anaesthetic research: statistics, biography and history,” Anaesthesia, vol. 65, no. 12, pp. 1212–1220, 2010. View at Publisher · View at Google Scholar · View at Scopus
  27. A. Dahan, M. J. L. J. van den Elsen, A. Berkenbosch et al., “Effects of subanesthetic halothane on the ventilatory responses to hypercapnia and acute hypoxia in healthy volunteers,” Anesthesiology, vol. 80, no. 4, pp. 727–738, 1994. View at Google Scholar · View at Scopus
  28. D. Sjögren, S. G. E. Lindahl, C. Gottlieb, and A. Sollevi, “Ventilatory responses to acute and sustained hypoxia during sevoflurane anesthesia in women,” Anesthesia and Analgesia, vol. 89, no. 1, pp. 209–214, 1999. View at Publisher · View at Google Scholar · View at Scopus
  29. D. Sjögren, S. G. E. Lindahl, and A. Sollevi, “Ventilatory responses to acute and sustained hypoxia during isoflurane anesthesia,” Anesthesia and Analgesia, vol. 86, no. 2, pp. 403–409, 1998. View at Publisher · View at Google Scholar · View at Scopus
  30. M. J. L. J. van den Elsen, A. Dahan, A. Berkenbosch, J. DeGoede, J. W. van Kleef, and I. C. W. Olievier, “Does subanesthetic isoflurane affect the ventilatory response to acute isocapnic hypoxia in healthy volunteers?” Anesthesiology, vol. 81, no. 4, pp. 860–867, 1994. View at Google Scholar · View at Scopus
  31. A. Beck, M. Zimpfer, and G. Raberger, “Inhibition of the carotid chemoreceptor reflex by enflurane in chronically instrumented dogs,” Naunyn-Schmiedeberg's Archives of Pharmacology, vol. 321, no. 2, pp. 145–148, 1982. View at Google Scholar · View at Scopus
  32. D. J. Cullen and E. I. Eger, “The effects of halothane on respiratory and cardiovascular responses to hypoxia in dogs: a dose-response study,” Anesthesiology, vol. 33, no. 5, pp. 487–496, 1970. View at Google Scholar · View at Scopus
  33. A. Dahan, E. Olofsen, L. Teppema, E. Sarton, and C. Olievier, “Speed of onset and offset and mechanisms of ventilatory depression from sevoflurane: an experimental study in the cat,” Anesthesiology, vol. 90, no. 4, pp. 1119–1128, 1999. View at Publisher · View at Google Scholar · View at Scopus
  34. J.-H. Gaudy, M. Quignon, J.-F. Sicard, and R. Maneglia, “Effects of halothane on ventilation and arterial blood gases in rats with or without diaphragmatic paralysis,” Canadian Journal of Anaesthesia, vol. 42, no. 3, pp. 249–255, 1995. View at Google Scholar · View at Scopus
  35. J.-H. Gaudy, J.-F. Sicard, R. Maneglia, and M. Quignon Atos, “The effects of halothane on the modifications of the PaCO2, the acid-base equilibrium and the ventilation caused by hypoxia in the rat,” Canadian Journal of Anaesthesia, vol. 41, no. 4, pp. 347–352, 1994. View at Google Scholar · View at Scopus
  36. J.-H. Gaudy, J.-F. Sicard, R. Maneglia, and M. Quignon, “The effects of halothane on arterial blood gas and acid-base balance in intact rats and chemodenervated rats,” Canadian Journal of Anaesthesia, vol. 40, no. 9, pp. 883–890, 1993. View at Google Scholar · View at Scopus
  37. H. Gautier, “Pattern of breathing during hypoxia or hypercapnia of the awake or anesthetized cat,” Respiration Physiology, vol. 27, no. 2, pp. 193–206, 1976. View at Google Scholar · View at Scopus
  38. H. Gautier, M. Bonora, and D. Zaoui, “Influence of halothane on control of breathing in intact and decerebrated cats,” Journal of Applied Physiology, vol. 63, no. 2, pp. 546–553, 1987. View at Google Scholar · View at Scopus
  39. H. Gautier, J. H. Gaudy, and M. Bonora, “Effects of anesthesia on breathing pattern,” Advances in Experimental Medicine and Biology, vol. 99, pp. 93–103, 1978. View at Google Scholar · View at Scopus
  40. H. Groeben, S. Meier, C. G. Tankersley, W. Mitzner, and R. H. Brown, “Heritable differences in respiratory drive and breathing pattern in mice during anaesthesia and emergence,” British Journal of Anaesthesia, vol. 91, no. 4, pp. 541–545, 2003. View at Publisher · View at Google Scholar · View at Scopus
  41. C. A. Hirshman, R. E. McCullough, P. J. Cohen, and J. V. Weil, “Depression of hypoxic ventilatory response by halothane, enflurane and isoflurane in dogs,” British Journal of Anaesthesia, vol. 49, no. 10, pp. 957–963, 1977. View at Google Scholar · View at Scopus
  42. S. O. Koh and J. W. Severinghaus, “Effect of halothane on hypoxic and hypercapnic ventilatory responses of goats,” British Journal of Anaesthesia, vol. 65, no. 5, pp. 713–717, 1990. View at Google Scholar · View at Scopus
  43. R. Maruyama and Y. Fukuda, “Ventilation- and carotid chemoreceptor discharge-response to hypoxia during induced hypothermia in halothane anesthetized rat,” Japanese Journal of Physiology, vol. 50, no. 1, pp. 91–99, 2000. View at Google Scholar · View at Scopus
  44. C. G. Morrill, J. R. Meyer, and J. V. Weil, “Hypoxic ventilatory depression in dogs,” Journal of Applied Physiology, vol. 38, no. 1, pp. 143–146, 1975. View at Google Scholar · View at Scopus
  45. E. A. E. Stuth, Z. Dogas, M. Krolo, J. P. Kampine, F. A. Hopp, and E. J. Zuperku, “Dose-dependent effects of halothane on the phrenic nerve responses to acute hypoxia in vagotomized dogs,” Anesthesiology, vol. 87, no. 6, pp. 1428–1439, 1997. View at Publisher · View at Google Scholar · View at Scopus
  46. E. A. E. Stuth, Z. Dogas, M. Krolo, J. P. Kampine, F. A. Hopp, and E. J. Zuperku, “Effects of halothane on the phrenic nerve responses to carbon dioxide mediated by carotid body chemoreceptors in vagotomized dogs,” Anesthesiology, vol. 87, no. 6, pp. 1440–1449, 1997. View at Publisher · View at Google Scholar · View at Scopus
  47. E. A. E. Stuth, M. Tonkovic-Capin, J. P. Kampine, and E. J. Zuperku, “Dose-dependent effects of isoflurane on the CO2 responses of expiratory medullary neurons and the phrenic nerve activities in dogs,” Anesthesiology, vol. 76, no. 5, pp. 763–774, 1992. View at Google Scholar · View at Scopus
  48. E. A. E. Stuth, M. Tonkovic-Capin, J. P. Kampine, J. Bajic, and E. J. Zuperku, “Dose-dependent effects of halothane on the carbon dioxide responses of expiratory and inspiratory bulbospinal neurons and the phrenic nerve activities in dogs,” Anesthesiology, vol. 81, no. 6, pp. 1470–1483, 1994. View at Publisher · View at Google Scholar · View at Scopus
  49. R. B. Weiskopf, L. W. Raymond, and J. W. Severinghaus, “Effects of halothane on canine respiratory responses to hypoxia with and without hypercarbia,” Anesthesiology, vol. 41, no. 4, pp. 350–360, 1974. View at Google Scholar · View at Scopus
  50. M. Zimpfer, S. P. Sit, and S. F. Vatner, “Effects of anesthesia on the canine carotid chemoreceptor reflex,” Circulation Research, vol. 48, no. 3, pp. 400–406, 1981. View at Google Scholar · View at Scopus
  51. R. D. Dripps and P. R. Dumke, “The effect of narcotics on the balance between central and chemoreceptor control of respiration,” Journal of Pharmacology and Experimental Therapeutics, vol. 77, pp. 290–306, 1943. View at Google Scholar
  52. J. H. Gaudy, S. Bergeret, J. F. Boitier, and F. Ferracci, “Hypoxic ventilatory drive in the dog under althesin anaesthesia,” British Journal of Anaesthesia, vol. 56, no. 6, pp. 631–636, 1984. View at Google Scholar · View at Scopus
  53. J. H. Gaudy, S. Bergeret, J. F. Boitier, and F. Ferracci, “Ventilatory effects of oxygen-enriched mixtures in the dog under althesin anaesthesia,” British Journal of Anaesthesia, vol. 58, no. 1, pp. 99–102, 1986. View at Google Scholar · View at Scopus
  54. S. Landgren, G. Liljestrand, and Y. Zotterman, “Wirkung von alcohol, aceton, äther und chloroform auf die Chemoreceptoren des glomus caroticum,” Archiv für Experimentelle Pathologie und Pharmakologie, vol. 219, no. 3, pp. 185–191, 1953. View at Publisher · View at Google Scholar · View at Scopus
  55. H. L. Price and J. Widdicombe, “Actions of cyclopropane on carotid sinus baroreceptors and carotid body,” The Journal of pharmacology and experimental therapeutics, vol. 135, pp. 233–239, 1962. View at Google Scholar · View at Scopus
  56. T. J. Biscoe and R. A. Millar, “Effects of inhalation anaesthetics on carotid body chemorceptor activity,” British Journal of Anaesthesia, vol. 40, no. 1, pp. 2–12, 1968. View at Publisher · View at Google Scholar · View at Scopus
  57. R. O. Davies, M. W. Edwards, and S. Lahiri, “Halothane depresses the response of carotid body chemoreceptors to hypoxia and hypercapnia in the cat,” Anesthesiology, vol. 57, no. 3, pp. 153–159, 1982. View at Google Scholar · View at Scopus
  58. T. Ide, Y. Sakurai, M. Aono, and T. Nishino, “Contribution of peripheral chemoreception to the depression of the hypoxic ventilatory response during halothane anesthesia in cats,” Anesthesiology, vol. 90, no. 4, pp. 1084–1091, 1999. View at Publisher · View at Google Scholar · View at Scopus
  59. H. Joensen, C. L. Sadler, J. Ponte, Y. Yamamoto, S. G. E. Lindahl, and L. I. Eriksson, “Isoflourane does, not depress the hypoxic response of rabbit carotid body chemoreceptors,” Anesthesia and Analgesia, vol. 91, no. 2, pp. 480–485, 2000. View at Google Scholar · View at Scopus
  60. J. P. Morray, R. Nobel, L. Bennet, and M. A. Hanson, “The effect of halothane on phrenic and chemoreceptor responses to hypoxia in anesthetized kittens,” Anesthesia and Analgesia, vol. 83, no. 2, pp. 329–335, 1996. View at Publisher · View at Google Scholar · View at Scopus
  61. J. Ponte and C. L. Sadler, “Effect of halothane, enflurane and isoflurane on carotid body chemoreceptor activity in the rabbit and the cat,” British Journal of Anaesthesia, vol. 62, no. 1, pp. 33–40, 1989. View at Google Scholar · View at Scopus
  62. J. T. van Dissel, A. Berkenbosch, and C. N. Olievier, “Effects of halothane on the ventilatory response to hypoxia and hypercapnia in cats,” Anesthesiology, vol. 62, no. 4, pp. 448–456, 1985. View at Google Scholar · View at Scopus
  63. A. Berkenbosch, J. de Goede, C. N. Olievier, and H. Quanjer, “Sites of action of halothane on respiratory pattern and ventilatory response to CO2 in cats,” Anesthesiology, vol. 57, no. 5, pp. 389–398, 1982. View at Google Scholar · View at Scopus
  64. C. A. Smith, H. V. Forster, G. M. Blain, and J. A. Dempsey, “An interdependent model of central/peripheral chemoreception: evidence and implications for ventilatory control,” Respiratory Physiology and Neurobiology, vol. 173, no. 3, pp. 288–297, 2010. View at Publisher · View at Google Scholar · View at Scopus
  65. I. D. Clement, J. J. Pandit, D. A. Bascom, K. L. Dorrington, D. F. O'Connor, and P. A. Robbins, “An assessment of central-peripheral ventilatory chemoreflex interaction using acid and bicarbonate infusions in humans,” Journal of Physiology, vol. 485, no. 2, pp. 561–570, 1995. View at Google Scholar · View at Scopus
  66. I. D. Clement, J. J. Pandit, D. A. Bascom, and P. A. Robbins, “Ventilatory chemoreflexes at rest following a brief period of heavy exercise in man,” Journal of Physiology, vol. 495, no. 3, pp. 875–884, 1996. View at Google Scholar · View at Scopus
  67. A. K. Curran, J. R. Rodman, P. R. Eastwood, K. S. Henderson, J. A. Dempsey, and C. A. Smith, “Ventilatory responses to specific CNS hypoxia in sleeping dogs,” Journal of Applied Physiology, vol. 88, no. 5, pp. 1840–1852, 2000. View at Google Scholar · View at Scopus
  68. D. A. Bascom, J. J. Pandit, I. D. Clement, and P. A. Robbins, “Effects of different levels of end-tidal P(O2) on ventilation during isocapnia in humans,” Respiration Physiology, vol. 88, no. 3, pp. 299–311, 1992. View at Publisher · View at Google Scholar · View at Scopus
  69. J. J. Pandit and S. M. Yentis, “All that glisters... How to assess the “value” of a scientific paper,” Anaesthesia, vol. 60, no. 4, pp. 373–383, 2005. View at Publisher · View at Google Scholar · View at Scopus
  70. A. R. Jadad, R. A. Moore, D. Carroll et al., “Assessing the quality of reports of randomized clinical trials: is blinding necessary?” Controlled Clinical Trials, vol. 17, no. 1, pp. 1–12, 1996. View at Publisher · View at Google Scholar · View at Scopus
  71. L. I. Eriksson, “Reduced hypoxic chemosensitivity in partially paralysed man. A new property of muscle relaxants?” Acta Anaesthesiologica Scandinavica, vol. 40, no. 5, pp. 520–523, 1996. View at Google Scholar · View at Scopus
  72. L. I. Eriksson, M. Sato, and J. W. Severinghaus, “Effect of a vecuronium-induced partial neuromuscular block on hypoxic ventilatory response,” Anesthesiology, vol. 78, no. 4, pp. 693–699, 1993. View at Google Scholar · View at Scopus
  73. N. Wyon, H. Joensen, Y. Yamamoto, S. G. E. Lindahl, and L. I. Eriksson, “Carotid body chemoreceptor function is impaired by vecuronium during hypoxia,” Anesthesiology, vol. 89, no. 6, pp. 1471–1479, 1998. View at Publisher · View at Google Scholar · View at Scopus
  74. J. V. Weil, T. Stevens, C. K. Pickett et al., “Strain-associated differences in hypoxic chemosensitivity of the carotid body in rats,” American Journal of Physiology—Lung Cellular and Molecular Physiology, vol. 274, no. 5, pp. L767–L774, 1998. View at Google Scholar · View at Scopus
  75. S. Yamaguchi, A. Balbir, B. Schofield et al., “Structural and functional differences of the carotid body between DBA/2J and A/J strains of mice,” Journal of Applied Physiology, vol. 94, no. 4, pp. 1536–1542, 2003. View at Google Scholar · View at Scopus
  76. D. A. Thomas, S. Swaminathan, C. S. Beardsmore et al., “Comparison of peripheral chemoreceptor responses in monozygotic and dizygotic twin infants,” American Review of Respiratory Disease, vol. 148, no. 6, pp. 1605–1609, 1993. View at Google Scholar · View at Scopus
  77. J. V. Weil, “Variation in human ventilatory control—genetic influence on the hypoxic ventilatory response,” Respiratory Physiology and Neurobiology, vol. 135, no. 2-3, pp. 239–246, 2003. View at Publisher · View at Google Scholar · View at Scopus
  78. C. Gonzalez, L. Almaraz, A. Obeso, and R. Rigual, “Carotid body chemoreceptors: from natural stimuli to sensory discharges,” Physiological Reviews, vol. 74, no. 4, pp. 829–898, 1994. View at Google Scholar · View at Scopus
  79. S. Lahiri and R. G. DeLaney, “Stimulus interaction in the responses of carotid body chemoreceptor single afferent fibers,” Respiration Physiology, vol. 24, no. 3, pp. 249–266, 1975. View at Google Scholar · View at Scopus
  80. J. J. Pandit and K. J. Buckler, “Differential effects of halothane and sevoflurane on hypoxia-induced intracellular calcium transients of neonatal rat carotid body type i cells,” British Journal of Anaesthesia, vol. 103, no. 5, pp. 701–710, 2009. View at Publisher · View at Google Scholar · View at Scopus
  81. R. S. Fitzgerald and G. A. Dehghani, “Neural responses of the cat carotid and aortic bodies to hypercapnia and hypoxia,” Journal of Applied Physiology Respiratory Environmental and Exercise Physiology, vol. 52, no. 3, pp. 596–601, 1982. View at Google Scholar · View at Scopus
  82. J. J. Pandit and K. J. Buckler, “Halothane and sevoflurane exert different degrees of inhibition on carotid body glomus cell intracellular Ca2+ response to hypoxia,” Advances in Experimental Medicine and Biology, vol. 669, pp. 201–204, 2010. View at Publisher · View at Google Scholar · View at Scopus
  83. J. J. Pandit, V. Winter, R. Bayliss, and K. J. Buckler, “Differential effects of halothane and isoflurane on carotid body glomus cell intracellular Ca2+ and background K+ channel responses to hypoxia,” Advances in Experimental Medicine and Biology, vol. 669, pp. 205–208, 2010. View at Publisher · View at Google Scholar · View at Scopus
  84. C. Putzke, P. J. Hanley, G. Schlichthör et al., “Differential effects of volatile and intravenous anesthetics on the activity of human TASK-1,” American Journal of Physiology—Cell Physiology, vol. 293, no. 4, pp. C1319–C1326, 2007. View at Publisher · View at Google Scholar · View at Scopus
  85. J. F. Cotten and K. W. Miller, “Volatile anesthetic regulation of TASK tandem pore potassium channels,” Anesthesiology, vol. 105, article A170, 2006. View at Google Scholar
  86. N. Karanovic, R. Pecotic, M. Valic et al., “The acute hypoxic ventilatory response under halothane, isoflurane, and sevoflurane anaesthesia in rats,” Anaesthesia, vol. 65, no. 3, pp. 227–234, 2010. View at Publisher · View at Google Scholar · View at Scopus
  87. C. Morris, A. Perris, J. Klein, and P. Mahoney, “Anaesthesia in haemodynamically compromised emergency patients: does ketamine represent the best choice of induction agent?” Anaesthesia, vol. 64, no. 5, pp. 532–539, 2009. View at Publisher · View at Google Scholar · View at Scopus
  88. J. J. Pandit, “Volatile anesthetics and the hypoxic ventilatory response: effects, clinical implications, and future research,” Seminars in Anesthesia, Perioperative Medicine and Pain, vol. 26, no. 2, pp. 49–57, 2007. View at Publisher · View at Google Scholar · View at Scopus
  89. W. Heinke and C. Schwarzbauer, “Subanesthetic isoflurane affects task-induced brain activation in a highly specific manner,” Anesthesiology, vol. 94, no. 6, pp. 973–981, 2001. View at Google Scholar · View at Scopus
  90. J. López-Barneo, R. Pardal, and P. Ortega-Sáenz, “Cellular mechanisms of oxygen sensing,” Annual Review of Physiology, vol. 63, pp. 259–287, 2001. View at Publisher · View at Google Scholar · View at Scopus
  91. C. Gonzalez, L. Almaraz, A. Obeso, and R. Rigual, “Carotid body chemoreceptors: from natural stimuli to sensory discharges,” Physiological Reviews, vol. 74, no. 4, pp. 829–898, 1994. View at Google Scholar · View at Scopus
  92. N. P. Franks and W. R. Lieb, “Background K+ channels: an important target for volatile anesthetics?” Nature Neuroscience, vol. 2, no. 5, pp. 395–396, 1999. View at Publisher · View at Google Scholar · View at Scopus
  93. M. T. Perez-Garcia and J. R. López-López, “Are Kv channels the essence of O2 sensing?” Circulation Research, vol. 86, pp. 490–491, 2000. View at Google Scholar
  94. D. Sanchez, J. R. López-López, M. T. Pérez-García et al., “Molecular identification of Kvα subunits that contribute to the oxygen-sensitive K+ current of chemoreceptor cells of the rabbit carotid body,” Journal of Physiology, vol. 542, no. 2, pp. 369–382, 2002. View at Publisher · View at Google Scholar · View at Scopus
  95. C. Gonzalez, G. Sanz-Alfayate, M. T. Agapito, A. Gomez-Niño, A. Rocher, and A. Obeso, “Significance of ROS in oxygen sensing in cell systems with sensitivity to physiological hypoxia,” Respiratory Physiology and Neurobiology, vol. 132, no. 1, pp. 17–41, 2002. View at Publisher · View at Google Scholar · View at Scopus
  96. L. J. Teppema, D. Nieuwenhuijs, E. Sarton et al., “Antioxidants prevent depression of the acute hypoxic ventilatory response by subanaesthetic halothane in men,” Journal of Physiology, vol. 544, no. 3, pp. 931–938, 2002. View at Publisher · View at Google Scholar · View at Scopus
  97. L. Teppema, R. Romberg, E. Sarton, and A. Dahan, “Antioxidants prevent depression of the acute hypoxic response by subanaesthetic isoflurane,” Anesthesiology, vol. 102, pp. 747–753, 2005. View at Google Scholar
  98. A. Dahan, R. Romberg, E. Sarton, and L. Teppema, “The influence of inhalational anesthetics on carotid body mediated responses,” in Pharmacology and Pathophysiology of the Control of Breathing, D. S. Ward, A. Dahan, and L. Teppema, Eds., vol. 202, Boca Raton, Tayler and Francis, 2005. View at Google Scholar
  99. A. Dahan and L. J. Teppema, “Influence of anaesthesia and analgesia on the control of breathing,” British Journal of Anaesthesia, vol. 91, no. 1, pp. 40–49, 2003. View at Publisher · View at Google Scholar · View at Scopus
  100. P. J. Hanley, J. Ray, U. Brandt, and J. Daut, “Halothane, isoflurane and sevolfurane inhibit NADH: ubiquinone oxidoreductase (complex I) of cardiac mitochondria,” Journal of Physiology, vol. 544, no. 3, pp. 687–693, 2002. View at Publisher · View at Google Scholar · View at Scopus
  101. A. Dahan, P. E. M. Taschner, J. C. Jansen, A. van der Mey, L. J. Teppema, and C. J. Cornelisse, “Carotid body tumors in humans caused by a mutation in the gene for succinate dehydrogenase D (SDHD),” Advances in Experimental Medicine and Biology, vol. 551, pp. 71–76, 2004. View at Google Scholar · View at Scopus
  102. K. Gannon, “Mortality associated with anaesthesia. A case review study,” Anaesthesia, vol. 46, no. 11, pp. 962–966, 1991. View at Google Scholar · View at Scopus
  103. T. M. Cook, S. Scott, and R. Mihai, “Litigation related to airway and respiratory complications of anaesthesia: an analysis of claims against the NHS in England 1995–2007,” Anaesthesia, vol. 65, no. 6, pp. 556–563, 2010. View at Publisher · View at Google Scholar · View at Scopus
  104. N. M. Woodall and T. M. Cook, “National census of airway management techniques used for anaesthesia in the UK: first phase of the Fourth National Audit Project at the Royal College of Anaesthetists,” British Journal of Anaesthesia, vol. 106, no. 2, pp. 266–271, 2011. View at Publisher · View at Google Scholar · View at Scopus
  105. N. P. Gill, B. Wright, and C. S. Reilly, “Relationship between hypoxaemic and cardiac ischaemic events in the perioperative period,” British Journal of Anaesthesia, vol. 68, no. 5, pp. 471–473, 1992. View at Google Scholar · View at Scopus
  106. W. C. Wilson and B. Shapiro, “Perioperative hypoxia: the clinical spectrum and current oxygen monitoring methodology,” Anesthesiology Clinics of North America, vol. 19, no. 4, pp. 769–812, 2001. View at Google Scholar · View at Scopus
  107. A. Dahan, M. Roozekrans, R. van der Schrier, T. Smith, and L. Aarts, “Primum non nocere or how to resolve drug-induced respiratory depression,” Anesthesiology, vol. 118, pp. 1261–1263, 2013. View at Google Scholar
  108. N. W. Goodman, “Volatile agents and the ventilatory response to hypoxia,” British Journal of Anaesthesia, vol. 72, no. 5, pp. 503–505, 1994. View at Google Scholar · View at Scopus
  109. J. M. Bailey, “Context-sensitive half-times and other decrement times of inhaled anesthetics,” Anesthesia and Analgesia, vol. 85, no. 3, pp. 681–686, 1997. View at Publisher · View at Google Scholar · View at Scopus
  110. M. Y. K. Wee, M. A. Hasan, and T. A. Thomas, “Isoflurane in labour,” Anaesthesia, vol. 138, pp. 610–616, 1993. View at Google Scholar
  111. S. T. Yeo, A. Holdcroft, S. M. Yentis, and A. Stewart, “Analgesia with sevoflurane during labour: I. Determination of the optimum concentration,” British Journal of Anaesthesia, vol. 98, no. 1, pp. 105–109, 2007. View at Publisher · View at Google Scholar · View at Scopus
  112. I. Gögenur, S. Rosenberg-Adamsen, C. Lie, M. Carstensen, V. Rasmussen, and J. Rosenberg, “Relationship between nocturnal hypoxaemia, tachycardia and myocardial ischaemia after major abdominal surgery,” British Journal of Anaesthesia, vol. 93, no. 3, pp. 333–338, 2004. View at Publisher · View at Google Scholar · View at Scopus
  113. G. Shirakami, Y. Teratani, and K. Fukuda, “Nocturnal episodic hypoxemia after ambulatory breast cancer surgery: comparison of sevoflurane and propofol-fentanyl anesthesia,” Journal of Anesthesia, vol. 20, no. 2, pp. 78–85, 2006. View at Publisher · View at Google Scholar · View at Scopus
  114. W. Schobersberger, B. Schobersberger, M. Mittermayr, D. Fries, and W. Streif, “Air travel, hypobaric hypoxia, and prothrombotic changes,” Journal of the American Medical Association, vol. 296, no. 19, pp. 2313–2314, 2006. View at Google Scholar · View at Scopus
  115. A. Dahan and L. Teppema, “Influence of low-dose anaesthetic agents on ventilatory control: where do we stand?” British Journal of Anaesthesia, vol. 83, no. 2, pp. 199–201, 1999. View at Google Scholar · View at Scopus
  116. B. Nagyova, K. L. Dorrington, E. W. Gill, and P. A. Robbins, “Comparison of the effects of sub-hypnotic concentrations of propofol and halothane on the acute ventilatory response to hypoxia,” British Journal of Anaesthesia, vol. 75, no. 6, pp. 713–718, 1995. View at Google Scholar · View at Scopus
  117. S. Karan, W. Voter, L. Palmer, and D. S. Ward, “Effects of pain and audiovisual stimulation on the opioid-induced depression of the hypoxic ventilatory response,” Anesthesiology, vol. 103, no. 2, pp. 384–390, 2005. View at Publisher · View at Google Scholar · View at Scopus