Table of Contents Author Guidelines Submit a Manuscript
Scientifica
Volume 2014, Article ID 793815, 9 pages
http://dx.doi.org/10.1155/2014/793815
Review Article

Influenza Viral Manipulation of Sphingolipid Metabolism and Signaling to Modulate Host Defense System

1Departments of Surgery and Molecular Microbiology & Immunology, University of Missouri-Columbia, Columbia, MO 65212, USA
2University of Missouri-Columbia, One Hospital Drive, Medical Sciences Building, NW301C, Columbia, MO 65212, USA

Received 24 November 2013; Accepted 24 December 2013; Published 23 January 2014

Academic Editors: G. Rice, T. Stamminger, and K. Watashi

Copyright © 2014 Madhuvanthi Vijayan and Bumsuk Hahm. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. Y. Edmonds, S. Milstien, and S. Spiegel, “Development of small-molecule inhibitors of sphingosine-1-phosphate signaling,” Pharmacology and Therapeutics, vol. 132, no. 3, pp. 352–360, 2011. View at Publisher · View at Google Scholar · View at Scopus
  2. M. Maceyka, K. B. Harikumar, S. Milstien, and S. Spiegel, “Sphingosine-1-phosphate signaling and its role in disease,” Trends in Cell Biology, vol. 22, no. 1, pp. 50–60, 2012. View at Publisher · View at Google Scholar · View at Scopus
  3. K. A. Orr Gandy and L. M. Obeid, “Targeting the sphingosine kinase/sphingosine 1-phosphate pathway in disease: review of sphingosine kinase inhibitors,” Biochimica Et Biophysica Acta, vol. 1831, pp. 157–166, 2013. View at Google Scholar
  4. B. Oskouian and J. D. Saba, “Cancer treatment strategies targeting sphingolipid metabolism,” Advances in Experimental Medicine and Biology, vol. 688, pp. 185–205, 2010. View at Publisher · View at Google Scholar · View at Scopus
  5. C. E. Stevenson, K. Takabe, M. Nagahashi, S. Milstien, and S. Spiegel, “Targeting sphingosine-1-phosphate in hematologic malignancies,” Anti-Cancer Agents in Medicinal Chemistry, vol. 11, no. 9, pp. 794–798, 2011. View at Google Scholar · View at Scopus
  6. H. Le Stunff, S. Milstien, and S. Spiegel, “Generation and metabolism of bioactive sphingosine-1-phosphate,” Journal of Cellular Biochemistry, vol. 92, no. 5, pp. 882–899, 2004. View at Publisher · View at Google Scholar · View at Scopus
  7. S. M. Pitson, “Regulation of sphingosine kinase and sphingolipid signaling,” Trends in Biochemical Sciences, vol. 36, no. 2, pp. 97–107, 2011. View at Publisher · View at Google Scholar · View at Scopus
  8. V. Brinkmann, M. D. Davis, C. E. Heise et al., “The immune modulator FTY720 targets sphingosine 1-phosphate receptors,” Journal of Biological Chemistry, vol. 277, no. 24, pp. 21453–21457, 2002. View at Publisher · View at Google Scholar · View at Scopus
  9. S. Mandala, R. Hajdu, J. Bergstrom et al., “Alteration of lymphocyte trafficking by sphingosine-1-phosphate receptor agonists,” Science, vol. 296, no. 5566, pp. 346–349, 2002. View at Publisher · View at Google Scholar · View at Scopus
  10. V. Brinkmann, A. Billich, T. Baumruker et al., “Fingolimod (FTY720): discovery and development of an oral drug to treat multiple sclerosis,” Nature Reviews Drug Discovery, vol. 9, no. 11, pp. 883–897, 2010. View at Publisher · View at Google Scholar · View at Scopus
  11. A. Horga and X. Montalban, “FTY720 (fingolimod) for relapsing multiple sclerosis,” Expert Review of Neurotherapeutics, vol. 8, no. 5, pp. 699–714, 2008. View at Publisher · View at Google Scholar · View at Scopus
  12. D. Marsolais, B. Hahm, K. H. Edelmann et al., “Local not systemic modulation of dendritic cell S1P receptors in lung blunts virus-specific immune responses to influenza,” Molecular Pharmacology, vol. 74, no. 3, pp. 896–903, 2008. View at Publisher · View at Google Scholar · View at Scopus
  13. D. Marsolais, B. Hahm, K. B. Walsh et al., “A critical role for the sphingosine analog AAL-R in dampening the cytokine response during influenza virus infection,” Proceedings of the National Academy of Sciences of the United States of America, vol. 106, no. 5, pp. 1560–1565, 2009. View at Publisher · View at Google Scholar · View at Scopus
  14. J. R. Teijaro, K. B. Walsh, S. Cahalan et al., “Endothelial cells are central orchestrators of cytokine amplification during influenza virus infection,” Cell, vol. 146, no. 6, pp. 980–991, 2011. View at Publisher · View at Google Scholar · View at Scopus
  15. K. B. Walsh, J. R. Teijaro, P. R. Wilker et al., “Suppression of cytokine storm with a sphingosine analog provides protection against pathogenic influenza virus,” Proceedings of the National Academy of Sciences of the United States of America, vol. 108, no. 29, pp. 12018–12023, 2011. View at Publisher · View at Google Scholar · View at Scopus
  16. M. B. Oldstone, J. R. Teijaro, K. B. Walsh, and H. Rosen, “Dissecting influenza virus pathogenesis uncovers a novel chemical approach to combat the infection,” Virology, vol. 435, pp. 92–101, 2013. View at Google Scholar
  17. H. Rosen, R. C. Stevens, M. Hanson, E. Roberts, and M. B. Oldstone, “Sphingosine-1-phosphate and its receptors: structure, signaling, and influence,” Annual Review of Biochemistry, vol. 82, pp. 637–662, 2013. View at Google Scholar
  18. K. B. Walsh, J. R. Teijaro, H. Rosen, and M. B. A. Oldstone, “Quelling the storm: utilization of sphingosine-1-phosphate receptor signaling to ameliorate influenza virus-induced cytokine storm,” Immunologic Research, vol. 51, no. 1, pp. 15–25, 2011. View at Publisher · View at Google Scholar · View at Scopus
  19. S. W. Paugh, B. S. Paugh, M. Rahmani et al., “A selective sphingosine kinase 1 inhibitor integrates multiple molecular therapeutic targets in human leukemia,” Blood, vol. 112, no. 4, pp. 1382–1391, 2008. View at Publisher · View at Google Scholar · View at Scopus
  20. Y.-J. Seo, S. Alexander, and B. Hahm, “Does cytokine signaling link sphingolipid metabolism to host defense and immunity against virus infections?” Cytokine and Growth Factor Reviews, vol. 22, no. 1, pp. 55–61, 2011. View at Publisher · View at Google Scholar · View at Scopus
  21. Y.-J. Seo, C. Blake, S. Alexander, and B. Hahm, “Sphingosine 1-phosphate-metabolizing enzymes control influenza virus propagation and viral cytopathogenicity,” Journal of Virology, vol. 84, no. 16, pp. 8124–8131, 2010. View at Publisher · View at Google Scholar · View at Scopus
  22. N. J. Machesky, G. Zhang, B. Raghavan et al., “Human cytomegalovirus regulates bioactive sphingolipids,” Journal of Biological Chemistry, vol. 283, no. 38, pp. 26148–26160, 2008. View at Publisher · View at Google Scholar · View at Scopus
  23. M. M. Monick, K. Cameron, L. S. Powers et al., “Sphingosine kinase mediates activation of extracellular signal-related kinase and Akt by respiratory syncytial virus,” American Journal of Respiratory Cell and Molecular Biology, vol. 30, no. 6, pp. 844–852, 2004. View at Publisher · View at Google Scholar · View at Scopus
  24. Y. J. Seo, C. J. Pritzl, M. Vijayan et al., “Sphingosine kinase 1 serves as a pro-viral factor by regulating viral RNA synthesis and nuclear export of viral ribonucleoprotein complex upon influenza virus infection,” PLoS One, vol. 8, no. 8, Article ID e75005, 2013. View at Google Scholar
  25. S. Wati, S. M. Rawlinson, R. A. Ivanov et al., “Tumour necrosis factor alpha (TNF-α) stimulation of cells with established dengue virus type 2 infection induces cell death that is accompanied by a reduced ability of TNF-α to activate nuclear factor κb and reduced sphingosine kinase-1 activity,” Journal of General Virology, vol. 92, no. 4, pp. 807–818, 2011. View at Publisher · View at Google Scholar · View at Scopus
  26. D. Yamane, M. A. Zahoor, Y. M. Mohamed et al., “Inhibition of sphingosine kinase by bovine viral diarrhea virus NS3 is crucial for efficient viral replication and cytopathogenesis,” Journal of Biological Chemistry, vol. 284, no. 20, pp. 13648–13659, 2009. View at Publisher · View at Google Scholar · View at Scopus
  27. P. Adams, “The influenza enigma,” Bulletin of the World Health Organization, vol. 90, pp. 250–251, 2012. View at Google Scholar
  28. R. A. Medina and A. García-Sastre, “Influenza A viruses: new research developments,” Nature Reviews Microbiology, vol. 9, no. 8, pp. 590–603, 2011. View at Publisher · View at Google Scholar · View at Scopus
  29. G. Neumann, G. G. Brownlee, E. Fodor, and Y. Kawaoka, “Orthomyxovirus replication, transcription, and polyadenylation,” Current Topics in Microbiology and Immunology, vol. 283, pp. 121–143, 2004. View at Google Scholar · View at Scopus
  30. MMWR, “Update: influenza activity—United States and worldwide,” Morbidity and Mortality Weekly Report, vol. 62, pp. 838–842, 2013. View at Google Scholar
  31. M. Imai and Y. Kawaoka, “The role of receptor binding specificity in interspecies transmission of influenza viruses,” Current Opinion in Virology, vol. 2, no. 2, pp. 160–167, 2012. View at Publisher · View at Google Scholar · View at Scopus
  32. T. T. Lam, J. Wang, Y. Shen et al., “The genesis and source of the H7N9 influenza viruses causing human infections in China,” Nature, vol. 502, pp. 241–244, 2013. View at Google Scholar
  33. WHO, “Antigenic and genetic characteristics of influenza A(H5N1) and influenza A(H9N2) viruses for development of candidate vaccines viruses for pandemic preparedness,” The Weekly Epidemiological Record, vol. 86, pp. 93–100, 2011. View at Google Scholar
  34. L. H. Pinto and R. A. Lamb, “The M2 proton channels of influenza A and B viruses,” Journal of Biological Chemistry, vol. 281, no. 14, pp. 8997–9000, 2006. View at Publisher · View at Google Scholar · View at Scopus
  35. S. Boivin, S. Cusack, R. W. H. Ruigrok, and D. J. Hart, “Influenza A virus polymerase: structural insights into replication and host adaptation mechanisms,” Journal of Biological Chemistry, vol. 285, no. 37, pp. 28411–28417, 2010. View at Publisher · View at Google Scholar · View at Scopus
  36. D. P. Nayak, R. A. Balogun, H. Yamada, Z. H. Zhou, and S. Barman, “Influenza virus morphogenesis and budding,” Virus Research, vol. 143, no. 2, pp. 147–161, 2009. View at Publisher · View at Google Scholar · View at Scopus
  37. D. Elton, M. Simpson-Holley, K. Archer et al., “Interaction of the influenza virus nucleoprotein with the cellular CRM1-mediated nuclear export pathway,” Journal of Virology, vol. 75, no. 1, pp. 408–419, 2001. View at Publisher · View at Google Scholar · View at Scopus
  38. A. C. Hurt, T. Chotpitayasunondh, N. J. Cox et al., “Antiviral resistance during the 2009 influenza A H1N1 pandemic: public health, laboratory, and clinical perspectives,” The Lancet Infectious Diseases, vol. 12, no. 3, pp. 240–248, 2012. View at Publisher · View at Google Scholar · View at Scopus
  39. WHO, “Global monitoring of antiviral resistance in currently circulating human influenza viruses,” Weekly Epidemiological Record, vol. 86, pp. 497–501, 2011. View at Google Scholar
  40. S. Pleschka, T. Wolff, C. Ehrhardt et al., “Influenza virus propagation is impaired by inhibition of the Raf/MEK/ERK signalling cascade,” Nature Cell Biology, vol. 3, no. 3, pp. 301–305, 2001. View at Publisher · View at Google Scholar · View at Scopus
  41. L. C. Platanias, “Mechanisms of type-I- and type-II-interferon-mediated signalling,” Nature Reviews Immunology, vol. 5, no. 5, pp. 375–386, 2005. View at Publisher · View at Google Scholar · View at Scopus
  42. D. Pchejetski, J. Nunes, K. Coughlan et al., “The involvement of sphingosine kinase 1 in LPS-induced Toll-like receptor 4-mediated accumulation of HIF-1α protein, activation of ASK1 and production of the pro-inflammatory cytokine IL-6,” Immunology and Cell Biology, vol. 89, no. 2, pp. 268–274, 2011. View at Publisher · View at Google Scholar · View at Scopus
  43. S. E. Alvarez, K. B. Harikumar, N. C. Hait et al., “Sphingosine-1-phosphate is a missing cofactor for the E3 ubiquitin ligase TRAF2,” Nature, vol. 465, no. 7301, pp. 1084–1088, 2010. View at Publisher · View at Google Scholar · View at Scopus
  44. P. Xia, L. Wang, P. A. B. Moretti et al., “Sphingosine kinase interacts with TRAF2 and dissects tumor necrosis factor-α signaling,” Journal of Biological Chemistry, vol. 277, no. 10, pp. 7996–8003, 2002. View at Publisher · View at Google Scholar · View at Scopus
  45. F. G. Tafesse, S. Sanyal, J. Ashour et al., “Intact sphingomyelin biosynthetic pathway is essential for intracellular transport of influenza virus glycoproteins,” Proceedings of the National Academy of Sciences, vol. 110, pp. 6406–6411, 2013. View at Google Scholar
  46. T. Shimizu, N. Takizawa, K. Watanabe, K. Nagata, and N. Kobayashi, “Crucial role of the influenza virus NS2 (NEP) C-terminal domain in M1 binding and nuclear export of vRNP,” FEBS Letters, vol. 585, no. 1, pp. 41–46, 2011. View at Publisher · View at Google Scholar · View at Scopus
  47. M. E. Lindsay, J. M. Holaska, K. Welch, B. M. Paschal, and I. G. Macara, “Ran-binding protein 3 is a cofactor for Crm1-mediated nuclear protein export,” Journal of Cell Biology, vol. 153, no. 7, pp. 1391–1402, 2001. View at Publisher · View at Google Scholar · View at Scopus
  48. R. Predicala and Y. Zhou, “The role of Ran-binding protein 3 during influenza A virus replication,” Journal of General Virology, vol. 94, pp. 977–984, 2013. View at Google Scholar
  49. P. Michael, D. Brabant, F. Bleiblo et al., “Influenza A induced cellular signal transduction pathways,” Journal of Thoracic Disease, vol. 5, pp. S132–S141, 2013. View at Google Scholar
  50. M. S. Hayden and S. Ghosh, “NF-κB in immunobiology,” Cell Research, vol. 21, no. 2, pp. 223–244, 2011. View at Publisher · View at Google Scholar · View at Scopus
  51. M. S. Hayden and S. Ghosh, “NF-κB, the first quarter-century: remarkable progress and outstanding questions,” Genes and Development, vol. 26, no. 3, pp. 203–234, 2012. View at Publisher · View at Google Scholar · View at Scopus
  52. G. Courtois and T. D. Gilmore, “Mutations in the NF-κB signaling pathway: implications for human disease,” Oncogene, vol. 25, no. 51, pp. 6831–6843, 2006. View at Publisher · View at Google Scholar · View at Scopus
  53. J. Hiscott, H. Kwon, and P. Génin, “Hostile takeovers: viral appropriation of the NF-κB pathway,” Journal of Clinical Investigation, vol. 107, no. 2, pp. 143–151, 2001. View at Google Scholar · View at Scopus
  54. A. Oeckinghaus, M. S. Hayden, and S. Ghosh, “Crosstalk in NF-κB signaling pathways,” Nature Immunology, vol. 12, no. 8, pp. 695–708, 2011. View at Publisher · View at Google Scholar · View at Scopus
  55. J. L. Pomerantz and D. Baltimore, “Two pathways to NF-κB,” Molecular Cell, vol. 10, no. 4, pp. 693–695, 2002. View at Publisher · View at Google Scholar · View at Scopus
  56. Q. Li and I. M. Verma, “NF-kappaB regulation in the immune system,” Nature Reviews Immunology, vol. 2, pp. 725–734, 2002. View at Google Scholar
  57. T. D. Gilmore, “Introduction to NF-κB: players, pathways, perspectives,” Oncogene, vol. 25, no. 51, pp. 6680–6684, 2006. View at Publisher · View at Google Scholar · View at Scopus
  58. L. A. Solt and M. J. May, “The IκB kinase complex: master regulator of NF-κB signaling,” Immunologic Research, vol. 42, no. 1–3, pp. 3–18, 2008. View at Publisher · View at Google Scholar · View at Scopus
  59. M. S. Hayden, A. P. West, and S. Ghosh, “NF-κB and the immune response,” Oncogene, vol. 25, no. 51, pp. 6758–6780, 2006. View at Publisher · View at Google Scholar · View at Scopus
  60. X. Wang, M. Li, H. Zheng et al., “Influenza A virus NS1 protein prevents activation of NF-κB and induction of alpha/beta interferon,” Journal of Virology, vol. 74, no. 24, pp. 11566–11573, 2000. View at Publisher · View at Google Scholar · View at Scopus
  61. M. Joo, Y. S. Hahn, M. Kwon, R. T. Sadikot, T. S. Blackwell, and J. W. Christman, “Hepatitis C virus core protein suppresses NF-κB activation and cyclooxygenase-2 expression by direct interaction with IκB kinase β,” Journal of Virology, vol. 79, no. 12, pp. 7648–7657, 2005. View at Publisher · View at Google Scholar · View at Scopus
  62. S. Gao, L. Song, J. Li et al., “Influenza A virus-encoded NS1 virulence factor protein inhibits innate immune response by targeting IKK,” Cellular Microbiology, vol. 14, pp. 1849–1866, 2012. View at Google Scholar
  63. K. M. Schuhmann, C. K. Pfaller, and K.-K. Conzelmann, “The measles virus V protein binds to p65 (RelA) to suppress NF-κB activity,” Journal of Virology, vol. 85, no. 7, pp. 3162–3171, 2011. View at Publisher · View at Google Scholar · View at Scopus
  64. H. Kwon, N. Pelletier, C. DeLuca et al., “Inducible expression of IκBα represser mutants interferes with NF-κB activity and HIV-1 replication in Jurkat T cells,” Journal of Biological Chemistry, vol. 273, no. 13, pp. 7431–7440, 1998. View at Publisher · View at Google Scholar · View at Scopus
  65. A. Lavorgna and E. W. Harhaj, “EBV LMP1: new and shared pathways to NF-κB activation,” Proceedings of the National Academy of Sciences of the United States of America, vol. 109, no. 7, pp. 2188–2189, 2012. View at Publisher · View at Google Scholar · View at Scopus
  66. N. Kumar, Z.-T. Xin, Y. Liang, H. Ly, and Y. Liang, “NF-κB signaling differentially regulates influenza virus RNA synthesis,” Journal of Virology, vol. 82, no. 20, pp. 9880–9889, 2008. View at Publisher · View at Google Scholar · View at Scopus
  67. F. Nimmerjahn, D. Dudziak, U. Dirmeier et al., “Active NF-κB signalling is a prerequisite for influenza virus infection,” Journal of General Virology, vol. 85, no. 8, pp. 2347–2356, 2004. View at Publisher · View at Google Scholar · View at Scopus
  68. E.-K. Pauli, M. Schmolke, T. Wolff et al., “Influenza A virus inhibits type I IFN signaling via NF-κB-dependent induction of SOCS-3 expression,” PLoS Pathogens, vol. 4, no. 11, Article ID e1000196, 2008. View at Publisher · View at Google Scholar · View at Scopus
  69. W. J. Wurzer, C. Ehrhardt, S. Pleschka et al., “NF-κB-dependent induction of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) and Fas/FasL is crucial for efficient influenza virus propagation,” Journal of Biological Chemistry, vol. 279, no. 30, pp. 30931–30937, 2004. View at Publisher · View at Google Scholar · View at Scopus
  70. S.-O. Yoon, S. Shin, Y. Liu et al., “Ran-binding protein 3 phosphorylation links the ras and PI3-kinase pathways to nucleocytoplasmic transport,” Molecular Cell, vol. 29, no. 3, pp. 362–375, 2008. View at Publisher · View at Google Scholar · View at Scopus
  71. X. Shu, W. Wu, R. D. Mosteller, and D. Broek, “Sphingosine kinase mediates vascular endothelial growth factor-induced activation of ras and mitogen-activated protein kinases,” Molecular and Cellular Biology, vol. 22, no. 22, pp. 7758–7768, 2002. View at Publisher · View at Google Scholar · View at Scopus
  72. S. M. Pitson, P. A. B. Moretti, J. R. Zebol et al., “Activation of sphingosine kinase 1 by ERK1/2-mediated phosphorylation,” EMBO Journal, vol. 22, no. 20, pp. 5491–5500, 2003. View at Publisher · View at Google Scholar · View at Scopus
  73. J. Herz, J. Pardo, H. Kashkar et al., “Acid sphingomyelinase is a key regulator of cytotoxic granule secretion by primary T lymphocytes,” Nature Immunology, vol. 10, no. 7, pp. 761–768, 2009. View at Publisher · View at Google Scholar · View at Scopus
  74. E. T. Samy, C. A. Meyer, P. Caplazi et al., “Cutting edge: modulation of intestinal autoimmunity and IL-2 signaling by sphingosine kinase 2 independent of sphingosine 1-phosphate,” Journal of Immunology, vol. 179, no. 9, pp. 5644–5648, 2007. View at Google Scholar · View at Scopus
  75. Y. J. Seo, C. J. Pritzl, M. Vijayan, C. R. Blake, M. E. McClain, and B. Hahm, “Sphingosine analogue AAL-R increases TLR7-mediated dendritic cell responses via p38 and type I IFN signaling pathways,” Journal of Immunology, vol. 188, pp. 4759–4768, 2012. View at Google Scholar
  76. J. H. Xie, N. Nomura, S. L. Koprak, E. J. Quackenbush, M. J. Forrest, and H. Rosen, “Sphingosine-1-phosphate receptor agonism impairs the efficiency of the local immune response by altering trafficking of naive and antigen-activated CD4+ T cells,” Journal of Immunology, vol. 170, no. 7, pp. 3662–3670, 2003. View at Google Scholar · View at Scopus