Table of Contents Author Guidelines Submit a Manuscript
Scientifica
Volume 2015, Article ID 734385, 7 pages
http://dx.doi.org/10.1155/2015/734385
Research Article

Will the Increasing of Anthropogenic Pressures Reduce the Biopotential Value of Sponges?

1Indonesian Research and Development Center for Marine and Fisheries Products Processing and Biotechnology, KS Tubun Petamburan VI Street, Slipi, Central Jakarta 10260, Indonesia
2Department of Marine Science, Faculty of Fisheries and Marine Science, Bogor Agricultural University, Kampus IPB, Darmaga Raya Street, Bogor 16680, Indonesia

Received 20 June 2015; Accepted 8 September 2015

Academic Editor: Zeng-Yei Hseu

Copyright © 2015 Hedi Indra Januar et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. S. S. Ebada, W. Lin, and P. Proksch, “Bioactive sesterterpenes and triterpenes from marine sponges: occurrence and pharmacological significance,” Marine Drugs, vol. 8, no. 2, pp. 313–346, 2010. View at Publisher · View at Google Scholar · View at Scopus
  2. M. Haber, M. Carbone, E. Mollo, M. Gavagnin, and M. Ilan, “Chemical defense against predators and bacterial fouling in the Mediterranean sponges Axinella polypoides and A. verrucosa,” Marine Ecology Progress Series, vol. 422, pp. 113–122, 2011. View at Publisher · View at Google Scholar · View at Scopus
  3. J. R. Pawlik, “The chemical ecology of sponges on Caribbean reefs: natural products shape natural systems,” BioScience, vol. 61, no. 11, pp. 888–898, 2011. View at Publisher · View at Google Scholar · View at Scopus
  4. S. De Caralt, D. Bry, N. Bontemps, X. Turon, M.-J. Uriz, and B. Banaigs, “Sources of secondary metabolite variation in Dysidea avara (porifera: Demospongiae): the importance of having good neighbors,” Marine Drugs, vol. 11, no. 2, pp. 489–503, 2013. View at Publisher · View at Google Scholar · View at Scopus
  5. A. D. Wright, A. McCluskey, M. J. Robertson, K. A. MacGregor, C. P. Gordon, and J. Guenther, “Anti-malarial, anti-algal, anti-tubercular, anti-bacterial, anti-photosynthetic, and anti-fouling activity of diterpene and diterpene isonitriles from the tropical marine sponge Cymbastela hooperi,” Organic & Biomolecular Chemistry, vol. 9, no. 2, pp. 400–407, 2011. View at Publisher · View at Google Scholar · View at Scopus
  6. M. C. Leal, J. Puga, J. Serôdio, N. C. M. Gomes, and R. Calado, “Trends in the discovery of new marine natural products from invertebrates over the last two decades—where and what are we bioprospecting?” PLoS ONE, vol. 7, no. 1, Article ID e30580, 2012. View at Publisher · View at Google Scholar · View at Scopus
  7. A. Sabdono, “Microbial symbionts in marine sponges: marine natural product factory,” Journal of Coastal Development, vol. 11, no. 2, pp. 57–61, 2011. View at Google Scholar
  8. E. Chasanah, “Marine biodiscovery research in Indonesia: challenges and rewards,” Journal of Coastal Development, vol. 12, no. 1, pp. 1–12, 2008. View at Google Scholar
  9. T. Caras and Z. Pasternak, “Long-term environmental impact of coral mining at the Wakatobi marine park, Indonesia,” Ocean & Coastal Management, vol. 52, no. 10, pp. 539–544, 2009. View at Publisher · View at Google Scholar · View at Scopus
  10. J. Haapkylä, R. K. F. Unsworth, A. S. Seymour et al., “Spatio-temporal coral disease dynamics in the Wakatobi Marine National Park, South-East Sulawesi, Indonesia,” Diseases of Aquatic Organisms, vol. 87, no. 1-2, pp. 105–115, 2009. View at Publisher · View at Google Scholar · View at Scopus
  11. G. S. Aeby, G. J. Williams, E. C. Franklin et al., “Growth anomalies on the coral genera Acropora and Porites are strongly associated with host density and human population size across the Indo-Pacific,” PLoS ONE, vol. 6, no. 2, Article ID e16887, 2011. View at Publisher · View at Google Scholar · View at Scopus
  12. M. J. C. Crabbe, S. Karaviotis, and D. J. Smith, “Preliminary comparison of three coral reef sites in the Wakatobi Marine National Park (S.E. Sulawesi, Indonesia): estimated recruitment dates compared with Discovery Bay, Jamaica,” Bulletin of Marine Science, vol. 74, no. 2, pp. 469–476, 2004. View at Google Scholar · View at Scopus
  13. J. J. Bell and D. Smith, “Ecology of sponge assemblages (Porifera) in the Wakatobi region, south-east Sulawesi, Indonesia: richness and abundance,” Journal of the Marine Biological Association of the United Kingdom, vol. 84, no. 3, pp. 581–591, 2004. View at Publisher · View at Google Scholar · View at Scopus
  14. M. T. Olaleye, “Cytotoxicity and antibacterial activity of methanolic extract of Hibiscus sabdariffa,” Journal of Medicinal Plants Research, vol. 1, no. 1, pp. 9–13, 2007. View at Google Scholar
  15. K. E. Kohler and S. M. Gill, “Coral Point Count with Excel extensions (CPCe): a Visual Basic program for the determination of coral and substrate coverage using random point count methodology,” Computers & Geosciences, vol. 32, no. 9, pp. 1259–1269, 2006. View at Publisher · View at Google Scholar · View at Scopus
  16. L. Abigail, A. L. Powell, L. J. Hepburn, D. J. Smith, and J. J. Bell, “Patterns of sponge abundance across a gradient of habitat quality in the Wakatobi Marine National Park, Indonesia,” The Open Marine Biology Journal, vol. 4, pp. 31–38, 2010. View at Google Scholar
  17. M. G. Nyamoita, I. Ester, M. H. Zakaria, L. Wilber, B. J. Ochola, and H. Ahmed, “Larvicidal and brine shrimp activities of Vitex schiliebenii extracts and isolated phytoecdysteroids on Anopheles gambiae Giles S.S Larvae,” Journal of Applied Pharmaceutical Science, vol. 3, no. 5, pp. 91–95, 2013. View at Google Scholar · View at Scopus
  18. O. Hammer, D. A. T. Harper, and P. D. Ryan, “Past: palaentological statistics software package for education and data analysis,” Palaentological Electronics, vol. 4, no. 1, 9 pages, 2001. View at Google Scholar
  19. S. Duan, S. Zhang, and H. Huang, “Transport of dissolved inorganic nitrogen from the major rivers to estuaries in China,” Nutrient Cycling in Agroecosystems, vol. 57, no. 1, pp. 13–22, 2000. View at Publisher · View at Google Scholar · View at Scopus
  20. T. J. T. Murdoch and R. B. Aronson, “Scale-dependent spatial variability of coral assemblages along the Florida Reef Tract,” Coral Reefs, vol. 18, no. 4, pp. 341–351, 1999. View at Publisher · View at Google Scholar · View at Scopus
  21. P. G. Rachello-Dolmen and D. F. R. Cleary, “Relating coral species traits to environmental conditions in the Jakarta Bay/Pulau Seribu reef system, Indonesia,” Estuarine, Coastal and Shelf Science, vol. 73, no. 3-4, pp. 816–826, 2007. View at Publisher · View at Google Scholar · View at Scopus
  22. J. J. Bell, J. Berman, T. Jones, and L. J. Hepburn, “Variability in the spatial association patterns of sponge assemblages in response to environmental heterogeneity,” Marine Biology, vol. 157, no. 11, pp. 2503–2509, 2010. View at Publisher · View at Google Scholar · View at Scopus
  23. M. González-Rivero, L. Yakob, and P. J. Mumby, “The role of sponge competition on coral reef alternative steady states,” Ecological Modelling, vol. 222, no. 11, pp. 1847–1853, 2011. View at Publisher · View at Google Scholar · View at Scopus
  24. J. J. Bell, S. K. Davy, T. Jones, M. W. Taylor, and N. S. Webster, “Could some coral reefs become sponge reefs as our climate changes?” Global Change Biology, vol. 19, no. 9, pp. 2613–2624, 2013. View at Publisher · View at Google Scholar · View at Scopus
  25. S. R. Kelly, P. R. Jensen, T. P. Henkel, W. Fenical, and J. R. Pawlik, “Effects of Caribbean sponge extracts on bacterial attachment,” Aquatic Microbial Ecology, vol. 31, no. 2, pp. 175–182, 2003. View at Publisher · View at Google Scholar · View at Scopus
  26. B. W. Hoeksema and N. J. De Voogd, “On the run: free-living mushroom corals avoiding interaction with sponges,” Coral Reefs, vol. 31, no. 2, pp. 455–459, 2012. View at Publisher · View at Google Scholar · View at Scopus
  27. H. M. Luter and A. R. Duckworth, “Influence of size and spatial competition on the bioactivity of coral reef sponges,” Biochemical Systematics and Ecology, vol. 38, no. 2, pp. 146–153, 2010. View at Publisher · View at Google Scholar · View at Scopus
  28. J. Ivanisevic, O. P. Thomas, L. Pedel et al., “Biochemical trade-offs: evidence for ecologically linked secondary metabolism of the sponge Oscarella balibaloi,” PLoS ONE, vol. 6, no. 11, Article ID e28059, 2011. View at Publisher · View at Google Scholar · View at Scopus
  29. B. G. Lages, B. G. Fleury, A. M. C. Hovell, C. M. Rezende, A. C. Pinto, and J. C. Creed, “Proximity to competitors changes secondary metabolites of non-indigenous cup corals, Tubastraea spp., in the southwest Atlantic,” Marine Biology, vol. 159, no. 7, pp. 1551–1559, 2012. View at Publisher · View at Google Scholar · View at Scopus
  30. O. Sacristán-Soriano, B. Banaigs, and M. A. Becerro, “Temporal trends in the secondary metabolite production of the sponge Aplysina aerophoba,” Marine Drugs, vol. 10, no. 4, pp. 677–693, 2012. View at Publisher · View at Google Scholar · View at Scopus