Table of Contents Author Guidelines Submit a Manuscript
Scientifica
Volume 2015, Article ID 851252, 17 pages
http://dx.doi.org/10.1155/2015/851252
Review Article

Macrophage Heterogeneity and Plasticity: Impact of Macrophage Biomarkers on Atherosclerosis

1Endocrine and Metabolic Diseases Research Center, School of Medicine, University of Zulia, Maracaibo 4004, Venezuela
2Endocrinology Department, Maracaibo University Hospital, Maracaibo 4004, Venezuela

Received 15 June 2015; Accepted 9 September 2015

Academic Editor: Alexander Szalai

Copyright © 2015 Joselyn Rojas et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. World Health Organization, Global Status Report on Noncommunicable Diseases 2010, World Health Organization, Geneva, Switzerland, 2011, http://www.who.int/mediacentre/factsheets/fs317/es/.
  2. C. D. Mathers and D. Loncar, “Projections of global mortality and burden of disease from 2002 to 2030,” PLoS Medicine, vol. 3, no. 11, article e442, 2006. View at Publisher · View at Google Scholar · View at Scopus
  3. Ministerio del Poder Popular para la Salud, Anuario de Mortalidad 2010, Ministerio del Poder Popular para la Salud, Caracas, Venezuela, 2010, http://www.mpps.gob.ve/index.php?option=com_phocadownload&view=category&id=11:anuarios-de-mortalidad.
  4. World Health Organization, Global Atlas on Cardiovascular Disease Prevention and Control, World Health Organization, Geneva, Switzerland, 2011, http://www.who.int/cardiovascular_diseases/publications/atlas_cvd/en/.
  5. P. Libby, P. M. Ridker, and G. K. Hansson, “Progress and challenges in translating the biology of atherosclerosis,” Nature, vol. 473, no. 7347, pp. 317–325, 2011. View at Publisher · View at Google Scholar · View at Scopus
  6. H. A. R. Hadi, C. S. Carr, and J. S. Al Suwaidi, “Endothelial dysfunction: cardiovascular risk factors, therapy, and outcome,” Vascular Health and Risk Management, vol. 1, no. 3, pp. 183–198, 2005. View at Google Scholar · View at Scopus
  7. J. Mestas and K. Ley, “Monocyte-endothelial cell interactions in the development of atherosclerosis,” Trends in Cardiovascular Medicine, vol. 18, no. 6, pp. 228–232, 2008. View at Publisher · View at Google Scholar · View at Scopus
  8. T. Gui, A. Shimokado, Y. Sun, T. Akasaka, and Y. Muragaki, “Diverse roles of macrophages in atherosclerosis: from inflammatory biology to biomarker discovery,” Mediators of Inflammation, vol. 2012, Article ID 693083, 14 pages, 2012. View at Publisher · View at Google Scholar · View at Scopus
  9. D. Hashimoto, J. Miller, and M. Merad, “Dendritic cell and macrophage heterogeneity in vivo,” Immunity, vol. 35, no. 3, pp. 323–335, 2011. View at Publisher · View at Google Scholar · View at Scopus
  10. S. Lee, S. Huen, H. Nishio et al., “Distinct macrophage phenotypes contribute to kidney injury and repair,” Journal of the American Society of Nephrology, vol. 22, no. 2, pp. 317–326, 2011. View at Publisher · View at Google Scholar · View at Scopus
  11. M. A. Bouhlel, B. Derudas, E. Rigamonti et al., “PPARγ activation primes human monocytes into alternative M2 macrophages with anti-inflammatory properties,” Cell Metabolism, vol. 6, no. 2, pp. 137–143, 2007. View at Publisher · View at Google Scholar · View at Scopus
  12. L. Chávez-Sánchez, J. E. Espinosa-Luna, K. Chávez-Rueda, M. V. Legorreta-Haquet, E. Montoya-Díaz, and F. Blanco-Favela, “Innate immune system cells in atherosclerosis,” Archives of Medical Research, vol. 45, no. 1, pp. 1–14, 2014. View at Publisher · View at Google Scholar · View at Scopus
  13. I. Junttila, R. P. Bourette, L. R. Rohrschneider, and O. Silvennoinen, “M-CSF induced differentiation of myeloid precursor cells involves activation of PKC-delta and expression of Pkare,” Journal of Leukocyte Biology, vol. 73, no. 2, pp. 281–288, 2003. View at Publisher · View at Google Scholar · View at Scopus
  14. A. Lehtonen, S. Matikainen, M. Miettinen, and I. Julkunen, “Granulocyte-macrophage colony-stimulating factor (GM-CSF)-induced STAT5 activation and target-gene expression during human monocyte/macrophage differentiation,” Journal of Leukocyte Biology, vol. 71, no. 3, pp. 511–519, 2002. View at Google Scholar · View at Scopus
  15. L. J. Pinderski, M. P. Fischbein, G. Subbanagounder et al., “Overexpression of interleukin-10 by activated T lymphocytes inhibits atherosclerosis in LDL receptor-deficient mice by altering lymphocyte and macrophage phenotypes,” Circulation Research, vol. 90, no. 10, pp. 1064–1071, 2002. View at Publisher · View at Google Scholar · View at Scopus
  16. L. Cardilo-Reis, S. Gruber, S. M. Schreier et al., “Interleukin-13 protects from atherosclerosis and modulates plaque composition by skewing the macrophage phenotype,” EMBO Molecular Medicine, vol. 4, no. 10, pp. 1072–1086, 2012. View at Publisher · View at Google Scholar · View at Scopus
  17. H. M. Johnson, C. T. Thorpe, C. M. Bartels et al., “Undiagnosed hypertension among young adults with regular primary care use,” Journal of Hypertension, vol. 32, no. 1, pp. 65–74, 2014. View at Publisher · View at Google Scholar · View at Scopus
  18. T. Hirase, H. Hara, Y. Miyazaki et al., “Interleukin 27 inhibits atherosclerosis via immunoregulation of macrophages in mice,” American Journal of Physiology—Heart and Circulatory Physiology, vol. 305, no. 3, pp. H420–H429, 2013. View at Publisher · View at Google Scholar · View at Scopus
  19. J. I. Odegaard, R. R. Ricardo-Gonzalez, M. H. Goforth et al., “Macrophage-specific PPARγ controls alternative activation and improves insulin resistance,” Nature, vol. 447, no. 7148, pp. 1116–1120, 2007. View at Publisher · View at Google Scholar · View at Scopus
  20. Q.-Z. Li, J. Sun, J.-J. Han, and Z.-J. Qian, “Anti-inflammation of simvastatin by polarization of murine macrophages from M1 phenotype to M2 phenotype,” Zhonghua Yi Xue Za Zhi, vol. 93, no. 26, pp. 2071–2074, 2013. View at Google Scholar · View at Scopus
  21. A. Katsargyris, C. Klonaris, S. Tsiodras, E. Bastounis, A. Giannopoulos, and S. Theocharis, “Statin treatment is associated with reduced toll-like receptor 4 immunohistochemical expression on carotid atherosclerotic plaques: a novel effect of statins,” Vascular, vol. 19, no. 6, pp. 320–326, 2011. View at Publisher · View at Google Scholar · View at Scopus
  22. M. van der Stoep, Z. Li, L. Calpe-Berdiel et al., “Elimination of macrophages drives LXR-induced regression both in initial and advanced stages of atherosclerotic lesion development,” Biochemical Pharmacology, vol. 86, no. 11, pp. 1594–1602, 2013. View at Publisher · View at Google Scholar · View at Scopus
  23. J.-L. Ma, P.-Y. Yang, Y.-C. Rui, L. Lu, H. Kang, and J. Zhang, “Hemin modulates cytokine expressions in macrophage-derived foam cells via heme oxygenase-1 induction,” Journal of Pharmacological Sciences, vol. 103, no. 3, pp. 261–266, 2007. View at Publisher · View at Google Scholar · View at Scopus
  24. L. D. Orozco, M. H. Kapturczak, B. Barajas et al., “Heme oxygenase-1 expression in macrophages plays a beneficial role in atherosclerosis,” Circulation Research, vol. 100, no. 12, pp. 1703–1711, 2007. View at Publisher · View at Google Scholar · View at Scopus
  25. A. J. Valente, A. M. Irimpen, U. Siebenlist, and B. Chandrasekar, “OxLDL induces endothelial dysfunction and death via TRAF3IP2: inhibition by HDL3 and AMPK activators,” Free Radical Biology and Medicine, vol. 70, pp. 117–128, 2014. View at Publisher · View at Google Scholar · View at Scopus
  26. X. Wan, Y. Huo, M. Johns et al., “5′-AMP-activated protein kinase-activating transcription factor 1 cascade modulates human monocyte-derived macrophages to atheroprotective functions in response to heme or metformin,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 33, no. 11, pp. 2470–2480, 2013. View at Publisher · View at Google Scholar · View at Scopus
  27. Ł. Bułdak, K. Łabuzek, R. J. Bułdak et al., “Metformin affects macrophages' phenotype and improves the activity of glutathione peroxidase, superoxide dismutase, catalase and decreases malondialdehyde concentration in a partially AMPK-independent manner in LPS-stimulated human monoacytes/macrophages,” Pharmacological Reports, vol. 66, no. 3, pp. 418–429, 2014. View at Publisher · View at Google Scholar · View at Scopus
  28. S. Banerjee, N. Xie, H. Cui et al., “microRNA let-7c regulates macrophage polarization,” The Journal of Immunology, vol. 190, no. 12, pp. 6542–6549, 2013. View at Publisher · View at Google Scholar · View at Scopus
  29. F. Zheng, S. Xing, Z. Gong, W. Mu, and Q. Xing, “Silence of NLRP3 suppresses atherosclerosis and stabilizes plaques in apolipoprotein E-deficient mice,” Mediators of Inflammation, vol. 2014, Article ID 507208, 8 pages, 2014. View at Publisher · View at Google Scholar · View at Scopus
  30. K. Nurmi, J. Virkanen, K. Rajamäki, K. Niemi, P. T. Kovanen, and K. K. Eklund, “Ethanol inhibits activation of NLRP3 and AIM2 inflammasomes in human macrophages—a novel anti-inflammatory action of alcohol,” PLoS ONE, vol. 8, no. 11, Article ID e78537, 2013. View at Publisher · View at Google Scholar · View at Scopus
  31. M. Satoh, T. Tabuchi, T. Itoh, and M. Nakamura, “NLRP3 inflammasome activation in coronary artery disease: results from prospective and randomized study of treatment with atorvastatin or rosuvastatin,” Clinical Science, vol. 126, no. 3, pp. 233–241, 2014. View at Publisher · View at Google Scholar · View at Scopus
  32. D. Strauss-Ayali, S. M. Conrad, and D. M. Mosser, “Monocyte subpopulations and their differentiation patterns during infection,” Journal of Leukocyte Biology, vol. 82, no. 2, pp. 244–252, 2007. View at Publisher · View at Google Scholar · View at Scopus
  33. L. Ziegler-Heitbrock, P. Ancuta, S. Crowe et al., “Nomenclature of monocytes and dendritic cells in blood,” Blood, vol. 116, no. 16, pp. e74–e80, 2010. View at Publisher · View at Google Scholar · View at Scopus
  34. J. Yang, L. Zhang, C. Yu, X. Yang, and H. Wang, “Monocyte and macrophage differentiation: circulation inflammatory monocyte as biomarker for inflammatory diseases,” Biomarker Research, vol. 2, article 1, 2014. View at Publisher · View at Google Scholar
  35. K. L. Wong, J. J.-Y. Tai, W.-C. Wong et al., “Gene expression profiling reveals the defining features of the classical, intermediate,and nonclassical human monocyte subsets,” Blood, vol. 118, no. 5, pp. e16–e31, 2011. View at Publisher · View at Google Scholar · View at Scopus
  36. S. Mosig, K. Rennert, S. Krause et al., “Different functions of monocyte subsets in familial hypercholesterolemia: potential function of CD14+CD16+ monocytes in detoxification of oxidized LDL,” The FASEB Journal, vol. 23, no. 3, pp. 866–874, 2009. View at Publisher · View at Google Scholar · View at Scopus
  37. A. Parihar, T. D. Eubank, and A. I. Doseff, “Monocytes and macrophages regulate immunity through dynamic networks of survival and cell death,” Journal of Innate Immunity, vol. 2, no. 3, pp. 204–215, 2010. View at Publisher · View at Google Scholar · View at Scopus
  38. F. Leuschner, P. Dutta, R. Gorbatov et al., “Therapeutic siRNA silencing in inflammatory monocytes in mice,” Nature Biotechnology, vol. 29, no. 11, pp. 1005–1010, 2011. View at Publisher · View at Google Scholar · View at Scopus
  39. J. Cros, N. Cagnard, K. Woollard et al., “Human CD14dim monocytes patrol and sense nucleic acids and viruses via TLR7 and TLR8 receptors,” Immunity, vol. 33, no. 3, pp. 375–386, 2010. View at Publisher · View at Google Scholar · View at Scopus
  40. S. Colin, M. Fanchon, L. Belloy et al., “HDL does not influence the polarization of human monocytes toward an alternative phenotype,” International Journal of Cardiology, vol. 172, no. 1, pp. 179–184, 2014. View at Publisher · View at Google Scholar · View at Scopus
  41. K. Ley, Y. I. Miller, and C. C. Hedrick, “Monocyte and macrophage dynamics during atherogenesis,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 31, no. 7, pp. 1506–1516, 2011. View at Publisher · View at Google Scholar · View at Scopus
  42. F. Gantner, R. Kupferschmidt, C. Schudt, A. Wendel, and A. Hatzelmann, “In vitro differentiation of human monocytes to macrophages: change of PDE profile and its relationship to suppression of tumour necrosis factor-α release by PDE inhibitors,” British Journal of Pharmacology, vol. 121, no. 2, pp. 221–231, 1997. View at Publisher · View at Google Scholar · View at Scopus
  43. S. J. Waddell, S. J. Popper, K. H. Rubins et al., “Dissecting interferon-induced transcriptional programs in human peripheral blood cells,” PLoS ONE, vol. 5, no. 3, Article ID e9753, 2010. View at Publisher · View at Google Scholar · View at Scopus
  44. V. V. Kunjathoor, M. Febbraio, E. A. Podrez et al., “Scavenger receptors class A-I/II and CD36 are the principal receptors responsible for the uptake of modified low density lipoprotein leading to lipid loading in macrophages,” The Journal of Biological Chemistry, vol. 277, no. 51, pp. 49982–49988, 2002. View at Publisher · View at Google Scholar · View at Scopus
  45. J. J. Anzinger, J. Chang, Q. Xu et al., “Native low-density lipoprotein uptake by macrophage colony-stimulating factor-differentiated human macrophages is mediated by macropinocytosis and micropinocytosis,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 30, no. 10, pp. 2022–2031, 2010. View at Publisher · View at Google Scholar · View at Scopus
  46. A. Varin and S. Gordon, “Alternative activation of macrophages: immune function and cellular biology,” Immunobiology, vol. 214, no. 7, pp. 630–641, 2009. View at Publisher · View at Google Scholar · View at Scopus
  47. D. M. Mosser and J. P. Edwards, “Exploring the full spectrum of macrophage activation,” Nature Reviews Immunology, vol. 8, no. 12, pp. 958–969, 2008. View at Publisher · View at Google Scholar · View at Scopus
  48. F. O. Martinez, L. Helming, R. Milde et al., “Genetic programs expressed in resting and IL-4 alternatively activated mouse and human macrophages: similarities and differences,” Blood, vol. 121, no. 9, pp. e57–e69, 2013. View at Publisher · View at Google Scholar · View at Scopus
  49. D. F. Fiorentino, M. W. Bond, and T. R. Mosmann, “Two types of mouse T helper cell. IV. Th2 clones secrete a factor that inhibits cytokine production by Th1 clones,” The Journal of Experimental Medicine, vol. 170, no. 6, pp. 2081–20095, 1989. View at Publisher · View at Google Scholar · View at Scopus
  50. J. Ehrchen, L. Steinmüller, K. Barczyk et al., “Glucocorticoids induce differentiation of a specifically activated, anti-inflammatory subtype of human monocytes,” Blood, vol. 109, no. 3, pp. 1265–1274, 2007. View at Publisher · View at Google Scholar · View at Scopus
  51. T. J. Koh and L. A. DiPietro, “Inflammation and wound healing: the role of the macrophage,” Expert Reviews in Molecular Medicine, vol. 13, article e23, 2011. View at Publisher · View at Google Scholar · View at Scopus
  52. G. Chinetti-Gbaguidi and B. Staels, “Macrophage polarization in metabolic disorders: functions and regulation,” Current Opinion in Lipidology, vol. 22, no. 5, pp. 365–372, 2011. View at Publisher · View at Google Scholar · View at Scopus
  53. B. D. Fleming and D. M. Mosser, “Regulatory macrophages: setting the threshold for therapy,” European Journal of Immunology, vol. 41, no. 9, pp. 2498–2502, 2011. View at Publisher · View at Google Scholar · View at Scopus
  54. S. Chung, R. Ranjan, Y. G. Lee et al., “Distinct role of FoxO1 in M-CSF- and GM-CSF-differentiated macrophages contributes LPS-mediated IL-10: implication in hyperglycemia,” Journal of Leukocyte Biology, vol. 97, no. 2, pp. 327–339, 2015. View at Publisher · View at Google Scholar
  55. F. O. Martinez, A. Sica, A. Mantovani, and M. Locati, “Macrophage activation and polarization,” Frontiers in Bioscience, vol. 13, no. 2, pp. 453–461, 2008. View at Publisher · View at Google Scholar · View at Scopus
  56. M. A. Duque Correa and M. Rojas López, “Alternative macrophage activation: the diversity of one cell involved in innate immunity in response to its environmental complexity,” Inmunologia, vol. 26, no. 2, pp. 73–86, 2007. View at Publisher · View at Google Scholar · View at Scopus
  57. D. H. Endemann and E. L. Schiffrin, “Endothelial dysfunction,” Journal of the American Society of Nephrology, vol. 15, no. 8, pp. 1983–1992, 2004. View at Publisher · View at Google Scholar · View at Scopus
  58. H. F. Galley and N. R. Webster, “Physiology of the endothelium,” British Journal of Anaesthesia, vol. 93, no. 1, pp. 105–113, 2004. View at Publisher · View at Google Scholar · View at Scopus
  59. U. Förstermann and T. Münzel, “Endothelial nitric oxide synthase in vascular disease: from marvel to menace,” Circulation, vol. 113, no. 13, pp. 1708–1714, 2006. View at Publisher · View at Google Scholar · View at Scopus
  60. C. M. Kolka and R. N. Bergman, “The barrier within: endothelial transport of hormones,” Physiology, vol. 27, no. 4, pp. 237–247, 2012. View at Publisher · View at Google Scholar · View at Scopus
  61. M. E. Widlansky, N. Gokce, J. F. Keaney Jr., and J. A. Vita, “The clinical implications of endothelial dysfunction,” Journal of the American College of Cardiology, vol. 42, no. 7, pp. 1149–1160, 2003. View at Publisher · View at Google Scholar · View at Scopus
  62. T. J. Anderson and F. Charbonneau, “Dyslipidemia and endothelial dysfunction: pathophysiology and therapy,” in Endothelial Dysfunctions in Vascular Disease, R. De Caterina and P. Libby, Eds., chapter 17, Blackwell Publishing, Oxford, UK, 2007. View at Publisher · View at Google Scholar
  63. A. Avogaro, M. Albiero, L. Menegazzo, S. de Kreutzenberg, and G. P. Fadini, “Endothelial dysfunction in diabetes: the role of reparatory mechanisms,” Diabetes Care, vol. 34, supplement 2, pp. S285–S290, 2011. View at Publisher · View at Google Scholar · View at Scopus
  64. G. S. Sainani and V. G. Maru, “Role of endothelial cell dysfunction in essential hypertension,” Journal of Association of Physicians of India, vol. 52, pp. 966–969, 2004. View at Google Scholar · View at Scopus
  65. H. M. Johnson, L. K. Gossett, M. E. Piper et al., “Effects of smoking and smoking cessation on endothelial function: 1-year outcomes from a randomized clinical trial,” Journal of the American College of Cardiology, vol. 55, no. 18, pp. 1988–1995, 2010. View at Publisher · View at Google Scholar · View at Scopus
  66. N. M. Hamburg and J. A. Vita, “Endothelial dysfunction in atherosclerosis: mechanisms of impaired nitric oxide bioactivity,” in Molecular Mechanisms of Atherosclerosis, J. Loscalzo, Ed., pp. 95–110, Taylor & Francis, London, UK, 2005. View at Google Scholar
  67. J. K. Freed and D. D. Gutterman, “Mitochondrial reactive oxygen species and vascular function: less is more,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 33, no. 4, pp. 673–675, 2013. View at Publisher · View at Google Scholar · View at Scopus
  68. M. Simionescu and A. V. Sima, “Morphology of atherosclerotic lesions,” in Inflammation and Atherosclerosis, G. Wick and C. Grundtman, Eds., pp. 19–37, Springer, Vienna, Austria, 2012. View at Publisher · View at Google Scholar
  69. P. Nigro, J.-I. Abe, and B. C. Berk, “Flow shear stress and atherosclerosis: a matter of site specificity,” Antioxidants and Redox Signaling, vol. 15, no. 5, pp. 1405–1414, 2011. View at Publisher · View at Google Scholar · View at Scopus
  70. G. P. Fadini, F. Simoni, R. Cappellari et al., “Pro-inflammatory monocyte-macrophage polarization imbalance in human hypercholesterolemia and atherosclerosis,” Atherosclerosis, vol. 237, no. 2, pp. 805–808, 2014. View at Publisher · View at Google Scholar · View at Scopus
  71. Y. Pérez, “Oxidación de las LDL (lipoproteínas de baja densidad) y su relación con la patogénesis de la aterosclerosis,” Revista CENIC Ciencias Biológicas, vol. 38, no. 1, pp. 3–11, 2007. View at Google Scholar
  72. F. J. Sheedy, A. Grebe, K. J. Rayner et al., “CD36 coordinates NLRP3 inflammasome activation by facilitating intracellular nucleation of soluble ligands into particulate ligands in sterile inflammation,” Nature Immunology, vol. 14, no. 8, pp. 812–820, 2013. View at Publisher · View at Google Scholar · View at Scopus
  73. G. Ceballos Reyes, I. Ramírez, C. Calzada-Mendoza, and I. Olivares-Corichi, “Disfunción endotelial y estrés oxidativo,” Revista de Endocrinología y Nutrición, vol. 14, no. 4, pp. 233–236, 2006. View at Google Scholar
  74. M. Repetto, J. Semprine, and A. Boveris, “Lipid peroxidation: chemical mechanism, biological implications and analytical determination,” in Lipid Peroxidation, A. Catala, Ed., InTech, Rijeka, Croatia, 2012. View at Publisher · View at Google Scholar
  75. H. H. F. Refsgaard, L. Tsai, and E. R. Stadtman, “Modifications of proteins by polyunsaturated fatty acid peroxidation products,” Proceedings of the National Academy of Sciences of the United States of America, vol. 97, no. 2, pp. 611–616, 2000. View at Publisher · View at Google Scholar · View at Scopus
  76. S. L. Stephen, K. Freestone, S. Dunn et al., “Scavenger receptors and their potential as therapeutic targets in the treatment of cardiovascular disease,” International Journal of Hypertension, vol. 2010, Article ID 646929, 21 pages, 2010. View at Publisher · View at Google Scholar · View at Scopus
  77. D. R. Greaves and S. Gordon, “The macrophage scavenger receptor at 30 years of age: current knowledge and future challenges,” Journal of Lipid Research, vol. 50, supplement, pp. S282–S286, 2009. View at Publisher · View at Google Scholar · View at Scopus
  78. J. Canton, D. Neculai, and S. Grinstein, “Scavenger receptors in homeostasis and immunity,” Nature Reviews Immunology, vol. 13, no. 9, pp. 621–634, 2013. View at Publisher · View at Google Scholar · View at Scopus
  79. K. J. Moore and M. W. Freeman, “Scavenger receptors in atherosclerosis: beyond lipid uptake,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 26, no. 8, pp. 1702–1711, 2006. View at Publisher · View at Google Scholar · View at Scopus
  80. S. Bekkering, J. Quintin, L. A. B. Joosten, J. W. M. van der Meer, M. G. Netea, and N. P. Riksen, “Oxidized low-density lipoprotein induces long-term proinflammatory cytokine production and foam cell formation via epigenetic reprogramming of monocytes,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 34, no. 8, pp. 1731–1738, 2014. View at Publisher · View at Google Scholar · View at Scopus
  81. F. J. Byfield, S. Tikku, G. H. Rothblat, K. J. Gooch, and I. Levitan, “OxLDL increases endothelial stiffness, force generation, and network formation,” Journal of Lipid Research, vol. 47, no. 4, pp. 715–723, 2006. View at Publisher · View at Google Scholar · View at Scopus
  82. A. Pirillo, G. D. Norata, and A. L. Catapano, “LOX-1, OxLDL, and atherosclerosis,” Mediators of Inflammation, vol. 2013, Article ID 152786, 12 pages, 2013. View at Publisher · View at Google Scholar · View at Scopus
  83. T. B. Rajavashisth, H. Yamada, and N. K. Mishra, “Transcriptional activation of the macrophage-colony stimulating factor gene by minimally modified LDL. Involvement of nuclear factor-κB,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 15, no. 10, pp. 1591–1598, 1995. View at Publisher · View at Google Scholar · View at Scopus
  84. T. A. Hamilton, J. A. Major, D. Armstrong, and J. M. Tebo, “Oxidized LDL modulates activation of NFκB in mononuclear phagocytes by altering the degradation of IκBs,” Journal of Leukocyte Biology, vol. 64, no. 5, pp. 667–674, 1998. View at Google Scholar · View at Scopus
  85. C. Mazière and J.-C. Mazière, “Activation of transcription factors and gene expression by oxidized low density lipoprotein,” Free Radical Biology and Medicine, vol. 46, no. 2, pp. 127–137, 2009. View at Publisher · View at Google Scholar · View at Scopus
  86. C.-S. Huang, A.-H. Lin, C.-T. Liu et al., “Isothiocyanates protect against oxidized LDL-induced endothelial dysfunction by upregulating Nrf2-dependent antioxidation and suppressing NFκB activation,” Molecular Nutrition and Food Research, vol. 57, no. 11, pp. 1918–1930, 2013. View at Publisher · View at Google Scholar · View at Scopus
  87. S. Xanthoulea, D. M. J. Curfs, M. H. Hofker, and M. P. J. De Winther, “Nuclear factor kappaB signaling in macrophage function and atherogenesis,” Current Opinion in Lipidology, vol. 16, no. 5, pp. 536–542, 2005. View at Publisher · View at Google Scholar · View at Scopus
  88. Y. Ahn, Y. S. Kim, and M. H. Jeong, “The role of nuclear factor kappa B activation in atherosclerosis and ischemic cardiac injury,” Korean Circulation Journal, vol. 36, no. 4, pp. 245–251, 2006. View at Publisher · View at Google Scholar · View at Scopus
  89. K. Van der Heiden, S. Cuhlmann, L. A. Luong, M. Zakkar, and P. C. Evans, “Role of nuclear factor κB in cardiovascular health and disease,” Clinical Science, vol. 118, no. 10, pp. 593–605, 2010. View at Publisher · View at Google Scholar · View at Scopus
  90. J. R. Harrington, “The role of MCP-1 in atherosclerosis,” Stem Cells, vol. 18, no. 1, pp. 65–66, 2000. View at Publisher · View at Google Scholar · View at Scopus
  91. L. C. Becker, “Yin and Yang of MCP-1,” Circulation Research, vol. 96, no. 8, pp. 812–814, 2005. View at Publisher · View at Google Scholar · View at Scopus
  92. W. Liu, Y. Yin, Z. Zhou, M. He, and Y. Dai, “OxLDL-induced IL-1beta secretion promoting foam cells formation was mainly via CD36 mediated ROS production leading to NLRP3 inflammasome activation,” Inflammation Research, vol. 63, no. 1, pp. 33–43, 2014. View at Publisher · View at Google Scholar · View at Scopus
  93. K. Semba, M. Nishizawa, N. Miyajima et al., “Yes-related protooncogene, syn, belongs to the protein-tyrosine kinase family,” Proceedings of the National Academy of Sciences of the United States of America, vol. 83, no. 15, pp. 5459–5463, 1986. View at Publisher · View at Google Scholar · View at Scopus
  94. M.-M. Huang, J. B. Bolen, J. W. Barnwell, S. J. Shattil, and J. S. Brugge, “Membrane glycoprotein IV (CD36) is physically associated with the Fyn, Lyn, and Yes protein-tyrosine kinases in human platelets,” Proceedings of the National Academy of Sciences of the United States of America, vol. 88, no. 17, pp. 7844–7848, 1991. View at Publisher · View at Google Scholar · View at Scopus
  95. K. Chen, M. Febbraio, W. Li, and R. L. Silverstein, “A specific CD36-dependent signaling pathway is required for platelet activation by oxidized low-density lipoprotein,” Circulation Research, vol. 102, no. 12, pp. 1512–1519, 2008. View at Publisher · View at Google Scholar · View at Scopus
  96. S. O. Rahaman, G. Zhou, and R. L. Silverstein, “Vav protein guanine nucleotide exchange factor regulates CD36 protein-mediated macrophage foam cell formation via calcium and dynamin-dependent processes,” The Journal of Biological Chemistry, vol. 286, no. 41, pp. 36011–36019, 2011. View at Publisher · View at Google Scholar · View at Scopus
  97. F. J. O. Rios, M. Ferracini, M. Pecenin et al., “Uptake of oxLDL and IL-10 production by macrophages requires PAFR and CD36 recruitment into the same lipid rafts,” PLoS ONE, vol. 8, no. 10, Article ID e76893, 2013. View at Publisher · View at Google Scholar · View at Scopus
  98. C. R. Stewart, L. M. Stuart, K. Wilkinson et al., “CD36 ligands promote sterile inflammation through assembly of a Toll-like receptor 4 and 6 heterodimer,” Nature Immunology, vol. 11, no. 2, pp. 155–161, 2010. View at Publisher · View at Google Scholar · View at Scopus
  99. Y. M. Park, “CD36, a scavenger receptor implicated in atherosclerosis,” Experimental and Molecular Medicine, vol. 46, no. 6, article e99, 2014. View at Publisher · View at Google Scholar · View at Scopus
  100. J. Feng, J. Gao, Y. Li et al., “BMP4 enhances foam cell formation by BMPR-2/SMAD1/5/8 signaling,” International Journal of Molecular Sciences, vol. 15, no. 4, pp. 5536–5552, 2014. View at Publisher · View at Google Scholar · View at Scopus
  101. D.-Z. Li, B.-Y. Wang, B.-J. Yang et al., “Thymic stromal lmphopoietin pomotes macrophage-derived foam cell formation,” Journal of Huazhong University of Science and Technology: Medical Science, vol. 34, no. 1, pp. 23–28, 2014. View at Publisher · View at Google Scholar · View at Scopus
  102. F. Zhou, Y. Pan, Z. Huang et al., “Visfatin induces cholesterol accumulation in macrophages through up-regulation of scavenger receptor-A and CD36,” Cell Stress and Chaperones, vol. 18, no. 5, pp. 643–652, 2013. View at Publisher · View at Google Scholar · View at Scopus
  103. F. F. Liu, X. Wu, Y. Zhang, Y. Wang, and F. Jiang, “TRAIL/DR5 signaling promotes macrophage foam cell formation by modulating scavenger receptor expression,” PLoS ONE, vol. 9, no. 1, Article ID e87059, 2014. View at Publisher · View at Google Scholar · View at Scopus
  104. J. L. Johnson, “Emerging regulators of vascular smooth muscle cell function in the development and progression of atherosclerosis,” Cardiovascular Research, vol. 103, no. 4, pp. 452–460, 2014. View at Publisher · View at Google Scholar · View at Scopus
  105. S. Li, Y.-S. Fan, L. H. Chow et al., “Innate diversity of adult human arterial smooth muscle cells: cloning of distinct subtypes from the internal thoracic artery,” Circulation Research, vol. 89, no. 6, pp. 517–525, 2001. View at Publisher · View at Google Scholar · View at Scopus
  106. C. A. Argmann, C. G. Sawyez, S. Li et al., “Human smooth muscle cell subpopulations differentially accumulate cholesteryl ester when exposed to native and oxidized lipoproteins,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 24, no. 7, pp. 1290–1296, 2004. View at Publisher · View at Google Scholar · View at Scopus
  107. Y. W. Yin, S. Q. Liao, M. J. Zhang et al., “TLR4-mediated inflammation promotes foam cell formation of vascular smooth muscle cell by upregulating ACAT1 expression,” Cell Death & Disease, vol. 5, no. 12, Article ID e1574, 2014. View at Publisher · View at Google Scholar
  108. L. Qin, Y.-B. Yang, Y.-X. Yang et al., “Ezetimibe suppresses cholesterol accumulation in lipid-loaded vascular smooth muscle cells in vitro via MAPK signaling,” Acta Pharmacologica Sinica, vol. 35, no. 9, pp. 1129–1136, 2014. View at Publisher · View at Google Scholar · View at Scopus
  109. B.-H. Li, Y.-W. Yin, Y. Liu et al., “TRPV1 activation impedes foam cell formation by inducing autophagy in oxLDL-treated vascular smooth muscle cells,” Cell Death and Disease, vol. 5, no. 4, Article ID e1182, 2014. View at Publisher · View at Google Scholar · View at Scopus
  110. S. Allahverdian, A. C. Chehroudi, B. M. McManus, T. Abraham, and G. A. Francis, “Contribution of intimal smooth muscle cells to cholesterol accumulation and macrophage-like cells in human atherosclerosis,” Circulation, vol. 129, no. 15, pp. 1551–1559, 2014. View at Publisher · View at Google Scholar · View at Scopus
  111. D. Gomez and G. K. Owens, “Smooth muscle cell phenotypic switching in atherosclerosis,” Cardiovascular Research, vol. 95, no. 2, pp. 156–164, 2012. View at Publisher · View at Google Scholar · View at Scopus
  112. L. Ivan and F. Antohe, “Hyperlipidemia induces endothelial-derived foam cells in culture,” Journal of Receptors and Signal Transduction, vol. 30, no. 2, pp. 106–114, 2010. View at Publisher · View at Google Scholar · View at Scopus
  113. A. Sica and A. Mantovani, “Macrophage plasticity and polarization: in vivo veritas,” Journal of Clinical Investigation, vol. 122, no. 3, pp. 787–795, 2012. View at Publisher · View at Google Scholar · View at Scopus
  114. A. Mantovani, S. K. Biswas, M. R. Galdiero, A. Sica, and M. Locati, “Macrophage plasticity and polarization in tissue repair and remodelling,” Journal of Pathology, vol. 229, no. 2, pp. 176–185, 2013. View at Publisher · View at Google Scholar · View at Scopus
  115. B. D. MacNeill, I.-K. Jang, B. E. Bouma et al., “Focal and multi-focal plaque macrophage distributions in patients with acute and stable presentations of coronary artery disease,” Journal of the American College of Cardiology, vol. 44, no. 5, pp. 972–979, 2004. View at Publisher · View at Google Scholar · View at Scopus
  116. N. Leitinger and I. G. Schulman, “Phenotypic polarization of macrophages in atherosclerosis,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 33, no. 6, pp. 1120–1126, 2013. View at Publisher · View at Google Scholar · View at Scopus
  117. G. Chinetti-Gbaguidi, M. Baron, M. A. Bouhlel et al., “Human atherosclerotic plaque alternative macrophages display low cholesterol handling but high phagocytosis because of distinct activities of the PPARγ and LXRα pathways,” Circulation Research, vol. 108, no. 8, pp. 985–995, 2011. View at Publisher · View at Google Scholar · View at Scopus
  118. J. L. Stöger, M. J. J. Gijbels, S. van der Velden et al., “Distribution of macrophage polarization markers in human atherosclerosis,” Atherosclerosis, vol. 225, no. 2, pp. 461–468, 2012. View at Publisher · View at Google Scholar · View at Scopus
  119. T. Krausgruber, K. Blazek, T. Smallie et al., “IRF5 promotes inflammatory macrophage polarization and TH1-TH17 responses,” Nature Immunology, vol. 12, no. 3, pp. 231–238, 2011. View at Publisher · View at Google Scholar · View at Scopus
  120. H. Xu, J. Zhu, S. Smith et al., “Notch-RBP-J signaling regulates the transcription factor IRF8 to promote inflammatory macrophage polarization,” Nature Immunology, vol. 13, no. 7, pp. 642–650, 2012. View at Publisher · View at Google Scholar · View at Scopus
  121. A. C. Labonte, A.-C. Tosello-Trampont, and Y. S. Hahn, “The role of macrophage polarization in infectious and inflammatory diseases,” Molecules and Cells, vol. 37, no. 4, pp. 275–285, 2014. View at Publisher · View at Google Scholar · View at Scopus
  122. M. Izadi, M. Fazel, M. Akrami et al., “Chlamydia pneumoniae in the atherosclerotic plaques of coronary artery disease patients,” Acta Medica Iranica, vol. 51, no. 12, pp. 864–870, 2013. View at Google Scholar · View at Scopus
  123. Y. V. Bobryshev, A. N. Orekhov, M. C. Killingsworth, and J. Lu, “Decreased expression of liver X receptor-α in macrophages infected with Chlamydia pneumoniae in human atherosclerotic arteries in situ,” Journal of Innate Immunity, vol. 3, no. 5, pp. 483–494, 2011. View at Publisher · View at Google Scholar · View at Scopus
  124. M. Kowalski, “Helicobacter pylori (H. pylori) infection in coronary artery disease: influence of H. pylori eradication on coronary artery lumen after percutaneous transluminal coronary angioplasty. The detection of H. pylori specific dna in human coronary atherosclerotic plaque,” Journal of Physiology and Pharmacology, vol. 52, no. 1, supplement 1, pp. 3–31, 2001. View at Google Scholar · View at Scopus
  125. K. C. Yaiw, O. Ovchinnikova, C. Taher et al., “High prevalence of human cytomegalovirus in carotid atherosclerotic plaques obtained from Russian patients undergoing carotid endarterectomy,” Herpesviridae, vol. 4, no. 1, article 3, 2013. View at Publisher · View at Google Scholar
  126. M. Benoit, B. Desnues, and J.-L. Mege, “Macrophage polarization in bacterial infections,” Journal of Immunology, vol. 181, no. 6, pp. 3733–3739, 2008. View at Publisher · View at Google Scholar · View at Scopus
  127. M. J. Kraakman, A. J. Murphy, K. Jandeleit-Dahm, and H. L. Kammoun, “Macrophage polarization in obesity and type 2 diabetes: weighing down our understanding of macrophage function?” Frontiers in Immunology, vol. 5, article 470, 2014. View at Publisher · View at Google Scholar · View at Scopus
  128. H. Kitade, K. Sawamoto, M. Nagashimada et al., “CCR5 plays a critical role in obesity-induced adipose tissue inflammation and insulin resistance by regulating both macrophage recruitment and M1/M2 status,” Diabetes, vol. 61, no. 7, pp. 1680–1690, 2012. View at Publisher · View at Google Scholar · View at Scopus
  129. H. Cucak, L. G. Grunnet, and A. Rosendahl, “Accumulation of M1-like macrophages in type 2 diabetic islets is followed by a systemic shift in macrophage polarization,” Journal of Leukocyte Biology, vol. 95, no. 1, pp. 149–160, 2014. View at Publisher · View at Google Scholar · View at Scopus
  130. G. P. Fadini, R. Cappellari, M. Mazzucato, C. Agostini, S. Vigili de Kreutzenberg, and A. Avogaro, “Monocyte-macrophage polarization balance in pre-diabetic individuals,” Acta Diabetologica, vol. 50, no. 6, pp. 977–982, 2013. View at Publisher · View at Google Scholar · View at Scopus
  131. H. S. Park, J. Y. Park, and R. Yu, “Relationship of obesity and visceral adiposity with serum concentrations of CRP, TNF-α and IL-6,” Diabetes Research and Clinical Practice, vol. 69, no. 1, pp. 29–35, 2005. View at Publisher · View at Google Scholar · View at Scopus
  132. S. Devaraj and I. Jialal, “C-reactive protein polarizes human macrophages to an M1 phenotype and inhibits transformation to the M2 phenotype,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 31, no. 6, pp. 1397–1402, 2011. View at Publisher · View at Google Scholar · View at Scopus
  133. S. Devaraj, J.-M. Yun, C. Duncan-Staley, and I. Jialal, “C-reactive protein induces M-CSF release and macrophage proliferation,” Journal of Leukocyte Biology, vol. 85, no. 2, pp. 262–267, 2009. View at Publisher · View at Google Scholar · View at Scopus
  134. F. Lovren, Y. Pan, A. Quan et al., “Adiponectin primes human monocytes into alternative anti-inflammatory M2 macrophages,” The American Journal of Physiology—Heart and Circulatory Physiology, vol. 299, no. 3, pp. H656–H663, 2010. View at Publisher · View at Google Scholar · View at Scopus
  135. J. Li, Q. Fu, H. Cui et al., “Interferon-α priming promotes lipid uptake and macrophage-derived foam cell formation: a novel link between interferon-α and atherosclerosis in lupus,” Arthritis and Rheumatism, vol. 63, no. 2, pp. 492–502, 2011. View at Publisher · View at Google Scholar · View at Scopus
  136. Y. H. Rho, J. Solus, P. Raggi et al., “Macrophage activation and coronary atherosclerosis in systemic lupus erythematosus and rheumatoid arthritis,” Arthritis Care & Research, vol. 63, no. 4, pp. 535–541, 2011. View at Google Scholar · View at Scopus
  137. F. Späh, “Inflammation in atherosclerosis and psoriasis: common pathogenic mechanisms and the potential for an integrated treatment approach,” British Journal of Dermatology, vol. 159, no. 2, pp. 10–17, 2008. View at Publisher · View at Google Scholar · View at Scopus
  138. X. Zhang, Y. Xie, H. Zhou et al., “Involvement of TLR4 in oxidized LDL/β2GPI/Anti-β2GPI-induced transformation of macrophages to foam cells,” Journal of Atherosclerosis and Thrombosis, vol. 21, no. 11, pp. 1140–1151, 2014. View at Publisher · View at Google Scholar · View at Scopus
  139. A. B. Reiss, K. Anwar, J. T. Merrill et al., “Plasma from systemic lupus patients compromises cholesterol homeostasis: a potential mechanism linking autoimmunity to atherosclerotic cardiovascular disease,” Rheumatology International, vol. 30, no. 5, pp. 591–598, 2010. View at Publisher · View at Google Scholar · View at Scopus
  140. L. L. Santos and E. F. Morand, “Macrophage migration inhibitory factor: a key cytokine in RA, SLE and atherosclerosis,” Clinica Chimica Acta, vol. 399, no. 1-2, pp. 1–7, 2009. View at Publisher · View at Google Scholar · View at Scopus
  141. L. Shi, Z. Zhang, A. M. Yu et al., “The SLE transcriptome exhibits evidence of chronic endotoxin exposure and has widespread dysregulation of non-coding and coding RNAs,” PLoS ONE, vol. 9, no. 5, Article ID e93846, 2014. View at Publisher · View at Google Scholar · View at Scopus
  142. L. R. Lopez, K. Kobayashi, Y. Matsunami, and E. Matsuura, “Immunogenic oxidized low-density lipoprotein/beta2-glycoprotein I complexes in the diagnostic management of atherosclerosis,” Clinical Reviews in Allergy and Immunology, vol. 37, no. 1, pp. 12–19, 2009. View at Publisher · View at Google Scholar · View at Scopus
  143. L. R. Lopez, M. Salazar-Paramo, C. Palafox-Sanchez, B. L. Hurley, E. Matsuura, and I. G.-D. La Torre, “Oxidized low-density lipoprotein and β2-glycoprotein I in patients with systemic lupus erythematosus and increased carotid intima-media thickness: implications in autoimmune-mediated atherosclerosis,” Lupus, vol. 15, no. 2, pp. 80–86, 2006. View at Publisher · View at Google Scholar · View at Scopus
  144. C. Porta, M. Rimoldi, G. Raes et al., “Tolerance and M2 (alternative) macrophage polarization are related processes orchestrated by p50 nuclear factor κB,” Proceedings of the National Academy of Sciences of the United States of America, vol. 106, no. 35, pp. 14978–14983, 2009. View at Publisher · View at Google Scholar · View at Scopus
  145. W. Spivia, P. S. Magno, P. Le, and D. A. Fraser, “Complement protein C1q promotes macrophage anti-inflammatory M2-like polarization during the clearance of atherogenic lipoproteins,” Inflammation Research, vol. 63, no. 10, pp. 885–93, 2014. View at Publisher · View at Google Scholar · View at Scopus
  146. S.-J. Park, K.-P. Lee, S. Kang et al., “Sphingosine 1-phosphate induced anti-atherogenic and atheroprotective M2 macrophage polarization through IL-4,” Cellular Signalling, vol. 26, no. 10, pp. 2249–2258, 2014. View at Publisher · View at Google Scholar · View at Scopus
  147. K. El Hadri, D. F. D. Mahmood, D. Couchie et al., “Thioredoxin-1 promotes anti-inflammatory macrophages of the M2 phenotype and antagonizes atherosclerosis,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 32, no. 6, pp. 1445–1452, 2012. View at Publisher · View at Google Scholar · View at Scopus
  148. F. De Paoli, B. Staels, and G. Chinetti-Gbaguidi, “Macrophage phenotypes and their modulation in atherosclerosis,” Circulation Journal, vol. 78, no. 8, pp. 1775–1781, 2014. View at Publisher · View at Google Scholar · View at Scopus
  149. J. Khallou-Laschet, A. Varthaman, G. Fornasa et al., “Macrophage plasticity in experimental atherosclerosis,” PLoS ONE, vol. 5, no. 1, Article ID e8852, 2010. View at Publisher · View at Google Scholar · View at Scopus
  150. D. Zhou, C. Huang, Z. Lin et al., “Macrophage polarization and function with emphasis on the evolving roles of coordinated regulation of cellular signaling pathways,” Cellular Signalling, vol. 26, no. 2, pp. 192–197, 2014. View at Publisher · View at Google Scholar · View at Scopus
  151. K. Ley, Y. I. Miller, and C. C. Hedrick, “Monocyte and macrophage dynamics during atherogenesis,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 31, no. 7, pp. 1506–1516, 2011. View at Publisher · View at Google Scholar · View at Scopus
  152. J. Llodrá, V. Angeli, J. Liu, E. Trogan, E. A. Fisher, and G. J. Rendolph, “Emigration of monocyte-derived cells from atherosclerotic lesions characterizes regressive, but not progressive, plaques,” Proceedings of the National Academy of Sciences of the United States of America, vol. 101, no. 32, pp. 11779–11784, 2004. View at Publisher · View at Google Scholar · View at Scopus
  153. A. C. Li and C. K. Glass, “The macrophage foam cell as a target for therapeutic intervention,” Nature Medicine, vol. 8, no. 11, pp. 1235–1242, 2002. View at Publisher · View at Google Scholar · View at Scopus
  154. B. Ludewig and J. D. Laman, “The in and out of monocytes in atherosclerotic plaques: balancing inflammation through migration,” Proceedings of the National Academy of Sciences of the United States of America, vol. 101, no. 32, pp. 11529–11530, 2004. View at Publisher · View at Google Scholar · View at Scopus
  155. R. R. S. Packard and G.-P. Shi, “Atherosclerosis progression and monocyte emigration from plaque,” Future Cardiology, vol. 2, no. 4, pp. 415–418, 2006. View at Publisher · View at Google Scholar · View at Scopus
  156. J. M. van Gils, M. C. Derby, L. R. Fernandes et al., “The neuroimmune guidance cue netrin-1 promotes atherosclerosis by inhibiting the emigration of macrophages from plaques,” Nature Immunology, vol. 13, no. 2, pp. 136–143, 2012. View at Publisher · View at Google Scholar · View at Scopus
  157. C. S. Robbins, I. Hilgendorf, G. F. Weber et al., “Local proliferation dominates lesional macrophage accumulation in atherosclerosis,” Nature Medicine, vol. 19, no. 9, pp. 1166–1172, 2013. View at Publisher · View at Google Scholar · View at Scopus
  158. I. Hilgendorf, F. K. Swirski, and C. S. Robbins, “Monocyte fate in atherosclerosis,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 35, no. 2, pp. 272–279, 2014. View at Publisher · View at Google Scholar · View at Scopus
  159. S. Potteaux, E. L. Gautier, S. B. Hutchison et al., “Suppressed monocyte recruitment drives macrophage removal from atherosclerotic plaques of Apoe−/− mice during disease regression,” The Journal of Clinical Investigation, vol. 121, no. 5, pp. 2025–2036, 2011. View at Publisher · View at Google Scholar · View at Scopus
  160. P. Libby, “Inflammation in atherosclerosis,” Nature, vol. 420, no. 6917, pp. 868–874, 2002. View at Publisher · View at Google Scholar · View at Scopus
  161. S. Kofler, T. Nickel, and M. Weis, “Role of cytokines in cardiovascular diseases: a focus on endothelial responses to inflammation,” Clinical Science, vol. 108, no. 3, pp. 205–213, 2005. View at Publisher · View at Google Scholar · View at Scopus
  162. Biomarkers Definitions Working Group, “Biomarkers and surrogate endpoints: preferred definitions and conceptual framework,” Clinical Pharmacology & Therapeutics, vol. 69, no. 3, pp. 89–95, 2001. View at Publisher · View at Google Scholar
  163. A. W. Schoenenberger, P. Jamshidi, R. Kobza et al., “Progression of coronary artery disease during long-term follow-up of the Swiss Interventional Study on Silent Ischemia Type II (SWISSI II),” Clinical Cardiology, vol. 33, no. 5, pp. 289–295, 2010. View at Publisher · View at Google Scholar · View at Scopus
  164. L. Hernando-Marrupe, A. Suarez-Cuervo, R. Hernández-Antolin et al., “Implications of age in coronary artery disease progression. A serial, volumetric, intravascular ultrasound study,” European Heart Journal, vol. 34, supplement 1, Article ID P2416, 2013. View at Publisher · View at Google Scholar
  165. N. S. Jenny, “Inflammation in aging: cause, effect, or both?” Discovery medicine, vol. 13, no. 73, pp. 451–460, 2012. View at Google Scholar · View at Scopus
  166. R. S. Sohal and W. C. Orr, “The redox stress hypothesis of aging,” Free Radical Biology and Medicine, vol. 52, no. 3, pp. 539–555, 2012. View at Publisher · View at Google Scholar · View at Scopus
  167. T. Singh and A. B. Newman, “Inflammatory markers in population studies of aging,” Ageing Research Reviews, vol. 10, no. 3, pp. 319–329, 2011. View at Publisher · View at Google Scholar · View at Scopus
  168. S. A. Cunningham, M. R. Kramer, and K. M. Venkat Narayan, “Incidence of childhood obesity in the United States,” The New England Journal of Medicine, vol. 370, no. 5, pp. 403–411, 2014. View at Publisher · View at Google Scholar · View at Scopus
  169. G. Jamil, M. Jamil, H. Alkhazraji et al., “Risk factor assessment of young patients with acute myocardial infarction,” American Journal of Cardiovascular Disease, vol. 3, no. 3, pp. 170–174, 2013. View at Google Scholar
  170. W. F. Fearon and D. T. Fearon, “Inflammation and cardiovascular disease role of the interleukin-1 receptor antagonist,” Circulation, vol. 117, no. 20, pp. 2577–2579, 2008. View at Publisher · View at Google Scholar · View at Scopus
  171. Z. Awan and J. Genest, “Inflammation modulation and cardiovascular disease prevention,” European Journal of Preventive Cardiology, vol. 22, no. 6, pp. 719–733, 2015. View at Publisher · View at Google Scholar
  172. F. De Paoli, B. Staels, and G. Chinetti-Gbaguidi, “Macrophage phenotypes and their modulation in atherosclerosis,” Circulation Journal, vol. 78, no. 8, pp. 1775–1781, 2014. View at Publisher · View at Google Scholar · View at Scopus
  173. P. Welsh, H. M. Murray, I. Ford et al., “Circulating interleukin-10 and risk of cardiovascular events: a prospective study in the elderly at risk,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 31, no. 10, pp. 2338–2344, 2011. View at Publisher · View at Google Scholar · View at Scopus
  174. R. P. Fernández and J. C. Kaski, “Interleukin-10 and coronary disease,” Revista Española de Cardiología, vol. 55, no. 7, pp. 738–750, 2002. View at Publisher · View at Google Scholar · View at Scopus
  175. Z. Mallat, S. Besnard, M. Duriez et al., “Protective role of interleukin-10 in atherosclerosis,” Circulation Research, vol. 85, no. 8, pp. e17–e24, 1999. View at Publisher · View at Google Scholar · View at Scopus
  176. Z. Mallat, C. Heymes, J. Ohan, E. Faggin, G. Lesèche, and A. Tedgui, “Expression of interleukin-10 in advanced human atherosclerotic plaques: relation to inducible nitric oxide synthase expression and cell death,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 19, no. 3, pp. 611–616, 1999. View at Publisher · View at Google Scholar · View at Scopus
  177. S. Ellison, K. Gabunia, S. E. Kelemen et al., “Attenuation of experimental atherosclerosis by interleukin-19,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 33, no. 10, pp. 2316–2324, 2013. View at Publisher · View at Google Scholar · View at Scopus
  178. H. Fu, Y.-Y. Tang, X.-P. Ouyang et al., “Interleukin-27 inhibits foam cell formation by promoting macrophage ABCA1 expression through JAK2/STAT3 pathway,” Biochemical and Biophysical Research Communications, vol. 452, no. 4, pp. 881–887, 2014. View at Publisher · View at Google Scholar · View at Scopus
  179. M. A. Bouhlel, B. Derudas, E. Rigamonti et al., “PPARgamma activation primes human monocytes into alternative M2 macrophages with anti-inflammatory properties,” Cell Metabolism, vol. 6, no. 2, pp. 137–143, 2007. View at Publisher · View at Google Scholar · View at Scopus
  180. F. Taylor, M. D. Huffman, A. F. Macedo et al., “Statins for the primary prevention of cardiovascular disease,” Cochrane Database of Systematic Reviews, vol. 1, Article ID CD004816, 2013. View at Publisher · View at Google Scholar
  181. B. Kwak, F. Mulhaupt, S. Myit, and F. Mach, “Statins as a newly recognized type of immunomodulator,” Nature Medicine, vol. 6, no. 12, pp. 1399–1402, 2000. View at Publisher · View at Google Scholar · View at Scopus
  182. S. Youssef, O. Stüve, J. O. Patarroyo et al., “The HMG-CoA reductase inhibitor, atorvastatin, promotes a Th2 bias and reverses paralysis in central nervous system autoimmune disease,” Nature, vol. 420, no. 6911, pp. 78–84, 2002. View at Publisher · View at Google Scholar · View at Scopus
  183. E. D. Sezer, E. Y. Sozmen, D. Nart, and T. Onat, “Effect of atorvastatin therapy on oxidantantioxidant status and atherosclerotic plaque formation,” Vascular Health and Risk Management, vol. 7, no. 1, pp. 333–343, 2011. View at Publisher · View at Google Scholar · View at Scopus
  184. M. Janić, M. Lunder, J. Zupan et al., “The low-dose atorvastatin and valsartan combination effectively protects the arterial wall from atherogenic diet-induced impairment in the guinea pig,” European Journal of Pharmacology, vol. 743, pp. 31–36, 2014. View at Publisher · View at Google Scholar · View at Scopus
  185. M. Lunder, G. Drevenšek, D. Černe, J. Marc, M. Janić, and M. Šabovič, “Treatment with low-dose atorvastatin, losartan, and their combination increases expression of vasoactive-related genes in rat aortas,” Journal of Cardiovascular Pharmacology and Therapeutics, vol. 18, no. 2, pp. 177–183, 2013. View at Publisher · View at Google Scholar · View at Scopus
  186. Y. Sun, J. Liu, B. Yang et al., “Inhibitory effect of co-administration of atorvastatin and endothelin-1 receptor antagonist on the progression of atherosclerosis in rabbit,” APMIS, vol. 122, no. 6, pp. 556–564, 2014. View at Publisher · View at Google Scholar · View at Scopus
  187. P. M. Ridker, E. Danielson, F. A. H. Fonseca et al., “Rosuvastatin to prevent vascular events in men and women with elevated C-reactive protein,” The New England Journal of Medicine, vol. 359, no. 21, pp. 2195–2207, 2008. View at Publisher · View at Google Scholar · View at Scopus
  188. B. C. Fellström, A. G. Jardine, R. E. Schmieder et al., “Rosuvastatin and cardiovascular events in patients undergoing hemodialysis,” The New England Journal of Medicine, vol. 360, no. 14, pp. 1395–1407, 2009. View at Publisher · View at Google Scholar · View at Scopus
  189. V. Narla, M. J. Blaha, R. S. Blumenthal, and E. D. Michos, “The JUPITER and AURORA clinical trials for rosuvastatin in special primary prevention populations: perspectives, outcomes, and consequences,” Vascular Health and Risk Management, vol. 5, pp. 1033–1042, 2009. View at Google Scholar · View at Scopus
  190. S. Erqou, C. C. Lee, and A. I. Adler, “Statins and glycaemic control in individuals with diabetes: a systematic review and meta-analysis,” Diabetologia, vol. 57, no. 12, pp. 2444–2452, 2014. View at Publisher · View at Google Scholar · View at Scopus
  191. Y.-W. Wu, H.-L. Kao, C.-L. Huang et al., “The effects of 3-month atorvastatin therapy on arterial inflammation, calcification, abdominal adipose tissue and circulating biomarkers,” European Journal of Nuclear Medicine and Molecular Imaging, vol. 39, no. 3, pp. 399–407, 2012. View at Publisher · View at Google Scholar · View at Scopus
  192. E. McFadden, R. Stevens, P. Glasziou, and R. Perera, “Implications of lower risk thresholds for statin treatment in primary prevention: analysis of CPRD and simulation modelling of annual cholesterol monitoring,” Preventive Medicine, vol. 70, pp. 14–16, 2015. View at Publisher · View at Google Scholar · View at Scopus
  193. B. Liu, J.-Y. Zhang, H.-M. Cao, Q. Wang, and H.-B. Wang, “Effect of rosuvastatin on ROCK activity, endothelial function, and inflammation in Asian patients with atherosclerosis,” Internal Medicine, vol. 51, no. 10, pp. 1177–1182, 2012. View at Publisher · View at Google Scholar · View at Scopus
  194. A. O. Abdel-Zaher, A. E. A. Elkoussi, L. H. Abudahab, M. H. Elbakry, and E. A.-E. Elsayed, “Simvastatin enhances the antihypertensive effect of ramipril in hypertensive hypercholesterolemic animals and patients. Possible role of nitric oxide, oxidative stress, and high sensitivity C-reactive protein,” Fundamental and Clinical Pharmacology, vol. 26, no. 6, pp. 701–711, 2012. View at Publisher · View at Google Scholar · View at Scopus
  195. H. E. Bays, “Adiposopathy, diabetes mellitus, and primary prevention of atherosclerotic coronary artery disease: treating ‘sick fat’ through improving fat function with antidiabetes therapies,” The American Journal of Cardiology, vol. 110, supplement, no. 9, pp. 4B–12B, 2012. View at Publisher · View at Google Scholar · View at Scopus
  196. W. S. Weintraub, S. R. Daniels, L. E. Burke et al., “Value of primordial and primary prevention for cardiovascular disease: a policy statement from the American Heart Association,” Circulation, vol. 124, no. 8, pp. 967–990, 2011. View at Publisher · View at Google Scholar
  197. V. G. Athyros, N. Katsiki, A. Karagiannis, and D. P. Mikhailidis, “High-intensity statin therapy and regression of coronary atherosclerosis in patients with diabetes mellitus,” Journal of Diabetes and its Complications, vol. 29, no. 1, pp. 142–145, 2015. View at Publisher · View at Google Scholar · View at Scopus
  198. Z. Liu, Y. Zhao, F. Wei et al., “Treatment with telmisartan/rosuvastatin combination has a beneficial synergistic effect on ameliorating Th17/Treg functional imbalance in hypertensive patients with carotid atherosclerosis,” Atherosclerosis, vol. 233, no. 1, pp. 291–299, 2014. View at Publisher · View at Google Scholar · View at Scopus
  199. R. Egede, L. O. Jensen, H. S. Hansen et al., “Effect of intensive lipid-lowering treatment compared to moderate lipid-lowering treatment with rosuvastatin on endothelial function in high risk patients,” International Journal of Cardiology, vol. 158, no. 3, pp. 376–379, 2012. View at Publisher · View at Google Scholar · View at Scopus
  200. M. Vrecer, S. Turk, J. Drinovec, and A. Mrhar, “Use of statins in primary and secondary prevention of coronary heart disease and ischemic stroke. Meta-analysis of randomized trials,” International Journal of Clinical Pharmacology and Therapeutics, vol. 41, no. 12, pp. 567–577, 2003. View at Publisher · View at Google Scholar · View at Scopus
  201. S. Mora, N. K. Wenger, D. A. Demicco et al., “Determinants of residual risk in secondary prevention patients treated with high-versus low-dose statin therapy: the treating to new targets (TNT) study,” Circulation, vol. 125, no. 16, pp. 1979–1987, 2012. View at Publisher · View at Google Scholar · View at Scopus
  202. T. R. Pedersen, O. Faergeman, J. J. P. Kastelein et al., “High-dose atorvastatin vs usual-dose simvastatin for secondary prevention after myocardial infarction: the IDEAL study: a randomized controlled trial,” Journal of the American Medical Association, vol. 294, no. 19, pp. 2437–2445, 2005. View at Publisher · View at Google Scholar · View at Scopus
  203. K. Sakamoto and J. Kimura, “Mechanism of statin-induced rhabdomyolysis,” Journal of Pharmacological Sciences, vol. 123, no. 4, pp. 289–294, 2013. View at Publisher · View at Google Scholar · View at Scopus
  204. K. A. Antons, C. D. Williams, S. K. Baker, and P. S. Phillips, “Clinical perspectives of statin-induced rhabdomyolysis,” The American Journal of Medicine, vol. 119, no. 5, pp. 400–409, 2006. View at Publisher · View at Google Scholar · View at Scopus
  205. M. Vrablik, L. Zlatohlavek, T. Stulc et al., “Statin-associated myopathy: from genetic predisposition to clinical management,” Physiological Research, vol. 63, pp. S327–S334, 2014. View at Google Scholar · View at Scopus
  206. K. Fukuda, T. Matsumura, T. Senokuchi et al., “Statins meditate anti-atherosclerotic action in smooth muscle cells by peroxisome proliferator-activated receptor-γ activation,” Biochemical and Biophysical Research Communications, vol. 457, no. 1, pp. 23–30, 2015. View at Publisher · View at Google Scholar · View at Scopus
  207. D. Liu, W. Cui, B. Liu et al., “Atorvastatin protects vascular smooth muscle cells from TGF-β1-stimulated calcification by inducing autophagy via suppression of the β-catenin pathway,” Cellular Physiology and Biochemistry, vol. 33, no. 1, pp. 129–141, 2014. View at Publisher · View at Google Scholar · View at Scopus
  208. B.-H. Li, S.-Q. Liao, Y.-W. Yin et al., “Telmisartan-induced PPARγ activity attenuates lipid accumulation in VSMCs via induction of autophagy,” Molecular Biology Reports, vol. 42, no. 1, pp. 179–186, 2014. View at Publisher · View at Google Scholar · View at Scopus
  209. M. Parikh, K. Patel, S. Soni, and T. Gandhi, “Liver X receptor: a cardinal target for atherosclerosis and beyond,” Journal of Atherosclerosis and Thrombosis, vol. 21, no. 6, pp. 519–531, 2014. View at Google Scholar · View at Scopus
  210. T. Sallam, A. Ito, X. Rong et al., “The macrophage LBP gene is an LXR target that promotes macrophage survival and atherosclerosis,” Journal of Lipid Research, vol. 55, no. 6, pp. 1120–1130, 2014. View at Publisher · View at Google Scholar · View at Scopus
  211. G. Bories, S. Colin, J. Vanhoutte et al., “Liver X receptor activation stimulates iron export in human alternative macrophages,” Circulation Research, vol. 113, no. 11, pp. 1196–1205, 2013. View at Publisher · View at Google Scholar · View at Scopus
  212. A. H. Hasty and L. Yvan-Charvet, “Liver X receptor α-dependent iron handling in M2 macrophages: the missing link between cholesterol and intraplaque hemorrhage?” Circulation Research, vol. 113, no. 11, pp. 1182–1185, 2013. View at Publisher · View at Google Scholar · View at Scopus
  213. J. J. Boyle, M. Johns, T. Kampfer et al., “Activating transcription factor 1 directs Mhem atheroprotective macrophages through coordinated iron handling and foam cell protection,” Circulation Research, vol. 110, no. 1, pp. 20–33, 2012. View at Publisher · View at Google Scholar · View at Scopus
  214. S. Colin, G. Chinetti-Gbaguidi, and B. Staels, “Macrophage phenotypes in atherosclerosis,” Immunological Reviews, vol. 262, no. 1, pp. 153–166, 2014. View at Publisher · View at Google Scholar · View at Scopus
  215. A. Kadl, A. K. Meher, P. R. Sharma et al., “Identification of a novel macrophage phenotype that develops in response to atherogenic phospholipids via Nrf2,” Circulation Research, vol. 107, no. 6, pp. 737–746, 2010. View at Publisher · View at Google Scholar · View at Scopus
  216. C. A. Gleissner, “Macrophage phenotype modulation by CXCL4 in atherosclerosis,” Frontiers in Physiology, vol. 3, article 1, 2012. View at Publisher · View at Google Scholar · View at Scopus
  217. A. V. Finn, M. Nakano, R. Polavarapu et al., “Hemoglobin directs macrophage differentiation and prevents foam cell formation in human atherosclerotic plaques,” Journal of the American College of Cardiology, vol. 59, no. 2, pp. 166–177, 2012. View at Publisher · View at Google Scholar · View at Scopus
  218. F. Forouzandeh, G. Salazar, N. Patrushev et al., “Metformin beyond diabetes: pleiotropic benefits of metformin in attenuation of atherosclerosis,” Journal of the American Heart Association, vol. 3, no. 6, Article ID e001202, 2014. View at Publisher · View at Google Scholar
  219. M. Ohira, T. Yamaguchi, A. Saiki et al., “Metformin reduces circulating malondialdehyde-modified low-density lipoprotein in type 2 diabetes mellitus,” Clinical and Investigative Medicine, vol. 37, no. 4, pp. E243–E251, 2014. View at Google Scholar · View at Scopus
  220. X. Liu, K. Fortin, and Z. Mourelatos, “MicroRNAs: biogenesis and molecular functions,” Brain Pathology, vol. 18, no. 1, pp. 113–121, 2008. View at Publisher · View at Google Scholar · View at Scopus
  221. R. W. Carthew and E. J. Sontheimer, “Origins and mechanisms of miRNAs and siRNAs,” Cell, vol. 136, no. 4, pp. 642–655, 2009. View at Publisher · View at Google Scholar · View at Scopus
  222. G. Liu and E. Abraham, “MicroRNAs in immune response and macrophage polarization,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 33, no. 2, pp. 170–177, 2013. View at Publisher · View at Google Scholar · View at Scopus
  223. G. Zhuang, C. Meng, X. Guo et al., “A novel regulator of macrophage activation: MiR-223 in obesity-associated adipose tissue inflammation,” Circulation, vol. 125, no. 23, pp. 2892–2903, 2012. View at Publisher · View at Google Scholar · View at Scopus
  224. X. Li, Y. Zhang, M. Xia, E. Gulbins, K. M. Boini, and P.-L. Li, “Activation of Nlrp3 inflammasomes enhances macrophage lipid-deposition and migration: implication of a novel role of inflammasome in atherogenesis,” PLoS ONE, vol. 9, no. 1, Article ID e87552, 2014. View at Publisher · View at Google Scholar · View at Scopus
  225. P. Duewell, H. Kono, K. J. Rayner et al., “NLRP3 inflammasomes are required for atherogenesis and activated by cholesterol crystals,” Nature, vol. 464, no. 7293, pp. 1357–1361, 2010. View at Publisher · View at Google Scholar · View at Scopus
  226. L. Wang, P. Qu, J. Zhao, and Y. Chang, “NLRP3 and downstream cytokine expression elevated in the monocytes of patients with coronary artery disease,” Archives of Medical Science, vol. 10, no. 4, pp. 791–800, 2014. View at Publisher · View at Google Scholar · View at Scopus
  227. T. Zhu, L. Zhang, S. Ling et al., “Scropolioside B inhibits IL-1β and cytokines expression through NF-κB and inflammasome NLRP3 pathways,” Mediators of Inflammation, vol. 2014, Article ID 819053, 10 pages, 2014. View at Publisher · View at Google Scholar · View at Scopus
  228. B. Razani, C. Feng, T. Coleman et al., “Autophagy links inflammasomes to atherosclerotic progression,” Cell Metabolism, vol. 15, no. 4, pp. 534–544, 2012. View at Publisher · View at Google Scholar · View at Scopus
  229. X. Liao, J. C. Sluimer, Y. Wang et al., “Macrophage autophagy plays a protective role in advanced atherosclerosis,” Cell Metabolism, vol. 15, no. 4, pp. 545–553, 2012. View at Publisher · View at Google Scholar · View at Scopus
  230. X. Wang, L. Li, X. Niu et al., “mTOR enhances foam cell formation by suppressing the autophagy pathway,” DNA and Cell Biology, vol. 33, no. 4, pp. 198–204, 2014. View at Publisher · View at Google Scholar · View at Scopus
  231. C. McCarthy, M. M. Duffy, D. Mooney et al., “IL-10 mediates the immunoregulatory response in conjugated linoleic acid-induced regression of atherosclerosis,” The FASEB Journal, vol. 27, no. 2, pp. 499–510, 2013. View at Publisher · View at Google Scholar · View at Scopus
  232. D. Shiraishi, Y. Fujiwara, Y. Komohara, H. Mizuta, and M. Takeya, “Glucagon-like peptide-1 (GLP-1) induces M2 polarization of human macrophages via STAT3 activation,” Biochemical and Biophysical Research Communications, vol. 425, no. 2, pp. 304–308, 2012. View at Publisher · View at Google Scholar · View at Scopus
  233. R. D. Singla, J. Wang, and D. K. Singla, “Regulation of notch 1 signaling in THP-1 cells enhances M2 macrophage differentiation,” The American Journal of Physiology—Heart and Circulatory Physiology, vol. 307, no. 11, pp. H1634–H1642, 2014. View at Publisher · View at Google Scholar · View at Scopus
  234. K. Daub, D. Siegel-Axel, T. Schönberger et al., “Inhibition of foam cell formation using a soluble CD68-Fc fusion protein,” Journal of Molecular Medicine, vol. 88, no. 9, pp. 909–920, 2010. View at Publisher · View at Google Scholar · View at Scopus
  235. Y. Yang, Y.-T. Lian, S.-Y. Huang, Y. Yang, L.-X. Cheng, and K. Liu, “GABA and topiramate inhibit the formation of human macrophage-derived foam cells by modulating cholesterol-metabolism-associated molecules,” Cellular Physiology and Biochemistry, vol. 33, no. 4, pp. 1117–1129, 2014. View at Publisher · View at Google Scholar · View at Scopus
  236. A. C. Foks, A. H. Lichtman, and J. Kuiper, “Treating atherosclerosis with regulatory T cells,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 35, no. 2, pp. 280–287, 2015. View at Google Scholar