Table of Contents Author Guidelines Submit a Manuscript
Scientifica
Volume 2016, Article ID 5813851, 7 pages
http://dx.doi.org/10.1155/2016/5813851
Research Article

Micropropagation, Micromorphological Studies, and In Vitro Flowering in Rungia pectinata L.

Biotechnology Laboratory, Department of Plant Science, MGGAC, Mahe, Pondicherry 673 311, India

Received 18 December 2015; Accepted 14 April 2016

Academic Editor: Marie-Aleth Lacaille-Dubois

Copyright © 2016 Mahipal S. Shekhawat et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

A tissue culture protocol was developed for an important medicinal plant Rungia pectinata L. in the present study. Nodal shoots were used as explants and surface-sterilized with 0.1% HgCl2 solution. Murashige and Skoog (MS) medium was used to establish the cultures of R. pectinata. The bud break was reported on MS medium supplemented with 1.0 mg L−1 6-benzylaminopurine (BAP). About 98% response was observed with this media combination and maximum 3.2 shoots per explant with 4.3 cm length were recorded. The shoots were further multiplied using MS medium augmented with 0.5 mg L−1 each of BAP and kinetin (Kin) + 0.1 mg L−1 indole-3 acetic acid (IAA). Maximum 13.2 shoots per explant with 5.2 cm length were observed. All the shoots were rooted (4.9 roots per shoot with 3.5 cm length) on half strength MS medium fortified with 2.0 mg L−1 indole-3 butyric acid (IBA). In vitro flowering was induced from the shoots on half strength MS medium supplemented with same concentrations and combinations of growth regulators used for shoot multiplication under 12/12 hr light/dark photoperiod. The plantlets were hardened in the greenhouse for two months and finally transferred to the field. The foliar micromorphological studies revealed the developmental changes in stomata, vein density, and trichomes during the culture of shoots under in vitro conditions.