Table of Contents Author Guidelines Submit a Manuscript
Security and Communication Networks
Volume 2017, Article ID 1701243, 21 pages
https://doi.org/10.1155/2017/1701243
Research Article

Hierarchical Group Based Mutual Authentication and Key Agreement for Machine Type Communication in LTE and Future 5G Networks

1National Institute of Technology Meghalaya, Shillong, Meghalaya, India
2Indian Institute of Management, Shillong, Meghalaya, India

Correspondence should be addressed to Probidita Roychoudhury; moc.liamg@nakuhp.atidiborp

Received 26 July 2016; Revised 1 October 2016; Accepted 12 October 2016; Published 19 January 2017

Academic Editor: Muhammad Khurram Khan

Copyright © 2017 Probidita Roychoudhury et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. “Cisco Visual Networking Index,” http://www.cisco.com/c/en/us/solutions/service-provider/visual-networking-index-vni/index.html.
  2. 3rd Generation Partnership Project; Technical Specification Group Services and System Aspects; Security aspects of Machine-Type Communications (Rel 12), 3GPP TR 33.868 V0.10.0, Septemper 2012.
  3. “FP7: Seventh Framework Programme,” https://ec.europa.eu/research/fp7/index_en.cfm.
  4. H. Droste, G. Zimmermann, M. Stamatelatos et al., “The METIS 5G architecture: a summary of METIS work on 5G architectures,” in Proceedings of the 81st IEEE Vehicular Technology Conference (VTC '15), pp. 1–5, May 2015. View at Publisher · View at Google Scholar · View at Scopus
  5. A. Osseiran, F. Boccardi, V. Braun et al., “Scenarios for 5G mobile and wireless communications: the vision of the METIS project,” IEEE Communications Magazine, vol. 52, no. 5, pp. 26–35, 2014. View at Publisher · View at Google Scholar · View at Scopus
  6. “iJOIN,” http://www.ict-ijoin.eu/.
  7. “TROPIC,” http://www.ict-tropic.eu/.
  8. 3rd Generation Partnership Project and Technical Specification Group Services and System Aspects, “Service requirements for Machine-Type Communications (MTC) (Rel 12),” 3GPP TS 22.368 V12.0.0, 2012. View at Google Scholar
  9. 3rd Generation Partnership Project and Technical Specification Group Services and System Aspects, “Service requirements for Home Node B (HNB) and Home eNode B (HeNB) (Rel 12),” 3GPP TS 22.220 V12.0.0, 2012. View at Google Scholar
  10. 3rd Generation Partnership Project, “Technical Specification Group Service and System Aspects; 3GPP System Architecture Evolution (SAE),” Security architecture (Rel 12) 3GPP TS 33.401 V12.13.0, 2012.
  11. J. Arkko and H. Haverinen, “Extensible Authentication Protocol Method for 3rd Generation Authentication and Key Agreement (EAP-AKA),” IETF RFC 4187, January 2006.
  12. M. Condoluci, M. Dohler, G. Araniti, A. Molinaro, and K. Zheng, “Toward 5G densenets: architectural advances for effective machine-type communications over femtocells,” IEEE Communications Magazine, vol. 53, no. 1, pp. 134–141, 2015. View at Publisher · View at Google Scholar · View at Scopus
  13. F. Haider, C.-X. Wang, H. Haas et al., “Spectral efficiency analysis of mobile Femtocell based cellular systems,” in Proceedings of the IEEE 13th International Conference on Communication Technology (ICCT '11), pp. 347–351, IEEE, Jinan, China, September 2011. View at Publisher · View at Google Scholar · View at Scopus
  14. 3rd Generation Partnership Project and Technical Specification Group Services and System Aspects, “Study on enhancements for Machine-Type Communications (MTC) (Release 12),” V12.0.0, 3GPP TR 22.888, 2012. View at Google Scholar
  15. V. B. Mišić, J. Mišić, X. Lin, and D. Nerandzic, “Capillary machine-to-machine communications: the road ahead,” in Ad-Hoc, Mobile, and Wireless Networks, X.-Y. Li, S. Papavassiliou, and S. Ruehrup, Eds., vol. 7363 of Lecture Notes in Computer Science, pp. 413–423, Springer, Berlin, Germany, 2012. View at Publisher · View at Google Scholar
  16. C. Lai, H. Li, R. Lu, and X. Shen, “SE-AKA: a secure and efficient group authentication and key agreement protocol for LTE networks,” Computer Networks, vol. 57, no. 17, pp. 3492–3510, 2013. View at Publisher · View at Google Scholar
  17. C. Lai, H. Li, X. Li, and J. Cao, “A novel group access authentication and key agreement protocol for machine-type communication,” Transactions on Emerging Telecommunications Technologies, vol. 26, no. 3, pp. 414–431, 2015. View at Publisher · View at Google Scholar · View at Scopus
  18. Y. Zhang, J. Chen, H. Li, W. Zhang, J. Cao, and C. Lai, “Dynamic group based authentication protocol for machine type communications,” in Proceedings of the 4th International Conference on Intelligent Networking and Collaborative Systems (INCoS '12), pp. 334–341, IEEE, Bucharest, Romania, September 2012. View at Publisher · View at Google Scholar · View at Scopus
  19. Y.-W. Chen, J.-T. Wang, K.-H. Chi, and C.-C. Tseng, “Group-based authentication and key agreement,” Wireless Personal Communications, vol. 62, no. 4, pp. 965–979, 2012. View at Publisher · View at Google Scholar · View at Scopus
  20. J. Cao, M. Ma, and H. Li, “A group-based authentication and key agreement for MTC in LTE networks,” in Proceedings of the IEEE Global Communications Conference (GLOBECOM '12), pp. 1017–1022, Anaheim, Calif, USA, December 2012. View at Publisher · View at Google Scholar · View at Scopus
  21. J. Cao, M. Ma, and H. Li, “Access authentication of mass device connections for MTC in LTE networks,” The Smart Computing Review, vol. 4, no. 4, pp. 262–277, 2014. View at Google Scholar
  22. C. Lai, H. Li, R. Lu, R. Jiang, and X. Shen, “LGTH: a lightweight group authentication protocol for machine-type communication in LTE networks,” in Proceedings of the IEEE Global Communications Conference (GLOBECOM '13), pp. 832–837, December 2013. View at Publisher · View at Google Scholar · View at Scopus
  23. D. Choi, S. Hong, and H.-K. Choi, “A group-based security protocol for machine type communications in LTE-advanced,” in Proceedings of the IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS '14), pp. 161–162, IEEE, Ontario, Canada, May 2014. View at Publisher · View at Google Scholar · View at Scopus
  24. C. Lai, R. Lu, D. Zheng, H. Li, and X. Sherman, “GLARM: group-based lightweight authentication scheme for resource-constrained machine to machine communications,” Computer Networks, vol. 99, pp. 66–81, 2016. View at Publisher · View at Google Scholar
  25. D. Boneh, C. Gentry, B. Lynn, and H. Shacham, Aggregate and Verifiably Encrypted Signatures from Bilinear Maps, Springer, Berlin, Germany, 2003.
  26. D. Naccache, M. Just, B. Preneel et al., “Nyberg–rueppel signature scheme,” in Encyclopedia of Cryptography and Security, p. 879, Springer, Boston, Mass, USA, 2011. View at Google Scholar
  27. J.-L. Huang, L.-Y. Yeh, and H.-Y. Chien, “ABAKA: an anonymous batch authenticated and key agreement scheme for value-added services in vehicular ad hoc networks,” IEEE Transactions on Vehicular Technology, vol. 60, no. 1, pp. 248–262, 2011. View at Publisher · View at Google Scholar · View at Scopus
  28. E. Klaoudatou, E. Konstantinou, G. Kambourakis, and S. Gritzalis, “A survey on cluster-based group key agreement protocols for WSNs,” IEEE Communications Surveys and Tutorials, vol. 13, no. 3, pp. 429–442, 2011. View at Publisher · View at Google Scholar · View at Scopus
  29. T. Rams and P. Pacyna, “A survey of group key distribution schemes with self-healing property,” IEEE Communications Surveys and Tutorials, vol. 15, no. 2, pp. 820–842, 2013. View at Publisher · View at Google Scholar · View at Scopus
  30. R. Roman, C. Alcaraz, J. Lopez, and N. Sklavos, “Key management systems for sensor networks in the context of the Internet of Things,” Computers and Electrical Engineering, vol. 37, no. 2, pp. 147–159, 2011. View at Publisher · View at Google Scholar · View at Scopus
  31. AVISPA: Automated Validation of Internet Security Protocols and Applications, http://www.avispa-project.org/.
  32. V. Shoup, “On formal models for secure key exchange,” Tech. Rep., 1999. View at Google Scholar
  33. M. Zhang and Y. Fang, “Security analysis and enhancements of 3GPP authentication and key agreement protocol,” IEEE Transactions on Wireless Communications, vol. 4, no. 2, pp. 734–742, 2005. View at Publisher · View at Google Scholar · View at Scopus
  34. Y.-L. Huang, C.-Y. Shen, and S. W. Shieh, “S-AKA: a provable and secure authentication key agreement protocol for UMTS networks,” IEEE Transactions on Vehicular Technology, vol. 60, no. 9, pp. 4509–4519, 2011. View at Publisher · View at Google Scholar · View at Scopus
  35. Y.-L. Huang, C. Y. Shen, S. Shieh, H.-J. Wang, and C.-C. Lin, “Provable secure AKA scheme with reliable key delegation in UMTS,” in Proceedings of the 3rd IEEE International Conference on Secure Software Integration Reliability Improvement (SSIRI '09), pp. 243–252, Shanghai, China, July 2009. View at Publisher · View at Google Scholar · View at Scopus