Security and Communication Networks
 Journal metrics
Acceptance rate30%
Submission to final decision82 days
Acceptance to publication42 days
CiteScore1.810
Impact Factor1.376
 Submit

Security of Cloud Computing Using Adaptive Neural Fuzzy Inference System

Read the full article

 Journal profile

Security and Communication Networks provides a prestigious forum for the R&D community in academia and industry working at the interdisciplinary nexus of next generation communications technologies for security implementations in all network layers.

 Editor spotlight

Security and Communication Networks maintains an Editorial Board of practicing researchers from around the world, to ensure manuscripts are handled by editors who are experts in the field of study.

 Special Issues

We currently have a number of Special Issues open for submission. Special Issues highlight emerging areas of research within a field, or provide a venue for a deeper investigation into an existing research area.

Latest Articles

More articles
Research Article

Using a Subtractive Center Behavioral Model to Detect Malware

In recent years, malware has evolved by using different obfuscation techniques; due to this evolution, the detection of malware has become problematic. Signature-based and traditional behavior-based malware detectors cannot effectively detect this new generation of malware. This paper proposes a subtractive center behavior model (SCBM) to create a malware dataset that captures semantically related behaviors from sample programs. In the proposed model, system paths, where malware behaviors are performed, and malware behaviors themselves are taken into consideration. This way malicious behavior patterns are differentiated from benign behavior patterns. Features that could not exceed the specified score are removed from the dataset. The datasets created using the proposed model contain far fewer features than the datasets created by n-gram and other models that have been used in other studies. The proposed model can handle both known and unknown malware, and the obtained detection rate and accuracy of the proposed model are higher than those of the known models. To show the effectiveness of the proposed model, 2 datasets with score and without score are created by using SCBM. In total, 6700 malware samples and 3000 benign samples are tested. The results are compared with those derived from n-gram and models from other studies in the literature. The test results show that, by combining the proposed model with an appropriate machine learning algorithm, the detection rate, false positive rate, and accuracy are measured as 99.9%, 0.2%, and 99.8%, respectively.

Research Article

Secure Information Transmissions in Wireless-Powered Cognitive Radio Networks for Internet of Medical Things

In this paper, we consider the issue of the secure transmissions for the cognitive radio-based Internet of Medical Things (IoMT) with wireless energy harvesting. In these systems, a primary transmitter (PT) will transmit its sensitive medical information to a primary receiver (PR) by a multi-antenna-based secondary transmitter (ST), where we consider that a potential eavesdropper may listen to the PT’s sensitive information. Meanwhile, the ST also transmits its own information concurrently by utilizing spectrum sharing. We aim to propose a novel scheme for jointly designing the optimal parameters, i.e., energy harvesting (EH) time ratio and secure beamforming vectors, for maximizing the primary secrecy transmission rate while guaranteeing secondary transmission requirement. For solving the nonconvex optimization problem, we transfer the problem into convex optimization form by adopting the semidefinite relaxation (SDR) method and Charnes–Cooper transformation technique. Then, the optimal secure beamforming vectors and energy harvesting duration can be obtained easily by utilizing the CVX tools. According to the simulation results of secrecy transmission rate, i.e., secrecy capacity, we can observe that the proposed protocol for the considered system model can effectively promote the primary secrecy transmission rate when compared with traditional zero-forcing (ZF) scheme, while ensuring the transmission rate of the secondary system.

Research Article

Cyber-Physical Security with RF Fingerprint Classification through Distance Measure Extensions of Generalized Relevance Learning Vector Quantization

Radio frequency (RF) fingerprinting extracts fingerprint features from RF signals to protect against masquerade attacks by enabling reliable authentication of communication devices at the “serial number” level. Facilitating the reliable authentication of communication devices are machine learning (ML) algorithms which find meaningful statistical differences between measured data. The Generalized Relevance Learning Vector Quantization-Improved (GRLVQI) classifier is one ML algorithm which has shown efficacy for RF fingerprinting device discrimination. GRLVQI extends the Learning Vector Quantization (LVQ) family of “winner take all” classifiers that develop prototype vectors (PVs) which represent data. In LVQ algorithms, distances are computed between exemplars and PVs, and PVs are iteratively moved to accurately represent the data. GRLVQI extends LVQ with a sigmoidal cost function, relevance learning, and PV update logic improvements. However, both LVQ and GRLVQI are limited due to a reliance on squared Euclidean distance measures and a seemingly complex algorithm structure if changes are made to the underlying distance measure. Herein, the authors (1) develop GRLVQI-D (distance), an extension of GRLVQI to consider alternative distance measures and (2) present the Cosine GRLVQI classifier using this framework. To evaluate this framework, the authors consider experimentally collected Z-wave RF signals and develop RF fingerprints to identify devices. Z-wave devices are low-cost, low-power communication technologies seen increasingly in critical infrastructure. Both classification and verification, claimed identity, and performance comparisons are made with the new Cosine GRLVQI algorithm. The results show more robust performance when using the Cosine GRLVQI algorithm when compared with four algorithms in the literature. Additionally, the methodology used to create Cosine GRLVQI is generalizable to alternative measures.

Research Article

Cycle-Consistent Adversarial GAN: The Integration of Adversarial Attack and Defense

In image classification of deep learning, adversarial examples where input is intended to add small magnitude perturbations may mislead deep neural networks (DNNs) to incorrect results, which means DNNs are vulnerable to them. Different attack and defense strategies have been proposed to better research the mechanism of deep learning. However, those researches in these networks are only for one aspect, either an attack or a defense. There is in the improvement of offensive and defensive performance, and it is difficult to promote each other in the same framework. In this paper, we propose Cycle-Consistent Adversarial GAN (CycleAdvGAN) to generate adversarial examples, which can learn and approximate the distribution of the original instances and adversarial examples, especially promoting attackers and defenders to confront each other and improve their ability. For CycleAdvGAN, once the Generator and are trained, can generate adversarial perturbations efficiently for any instance, improving the performance of the existing attack methods, and can generate recovery adversarial examples to clean instances, defending against existing attack methods. We apply CycleAdvGAN under semiwhite-box and black-box settings on two public datasets MNIST and CIFAR10. Using the extensive experiments, we show that our method has achieved the state-of-the-art adversarial attack method and also has efficiently improved the defense ability, which made the integration of adversarial attack and defense come true. In addition, it has improved the attack effect only trained on the adversarial dataset generated by any kind of adversarial attack.

Research Article

Employing a Machine Learning Approach to Detect Combined Internet of Things Attacks against Two Objective Functions Using a Novel Dataset

One of the important features of routing protocol for low-power and lossy networks (RPLs) is objective function (OF). OF influences an IoT network in terms of routing strategies and network topology. On the contrary, detecting a combination of attacks against OFs is a cutting-edge technology that will become a necessity as next generation low-power wireless networks continue to be exploited as they grow rapidly. However, current literature lacks study on vulnerability analysis of OFs particularly in terms of combined attacks. Furthermore, machine learning is a promising solution for the global networks of IoT devices in terms of analysing their ever-growing generated data and predicting cyberattacks against such devices. Therefore, in this paper, we study the vulnerability analysis of two popular OFs of RPL to detect combined attacks against them using machine learning algorithms through different simulated scenarios. For this, we created a novel IoT dataset based on power and network metrics, which is deployed as part of an RPL IDS/IPS solution to enhance information security. Addressing the captured results, our machine learning approach is successful in detecting combined attacks against two popular OFs of RPL based on the power and network metrics in which MLP and RF algorithms are the most successful classifier deployment for single and ensemble models.

Research Article

Botnet Forensic Analysis Using Machine Learning

Botnet forensic analysis helps in understanding the nature of attacks and the modus operandi used by the attackers. Botnet attacks are difficult to trace because of their rapid pace, epidemic nature, and smaller size. Machine learning works as a panacea for botnet attack related issues. It not only facilitates detection but also helps in prevention from bot attack. The proposed inquisition model endeavors improved quality of results by comprehensive botnet detection and forensic analysis. This scenario has been applied in eight different combinations of ensemble classifier technique to detect botnet evidence. The study is also compared to the ensemble-based classifiers with the single classifier using different parameters. The results exhibit that the proposed model can improve accuracy over a single classifier.

Security and Communication Networks
 Journal metrics
Acceptance rate30%
Submission to final decision82 days
Acceptance to publication42 days
CiteScore1.810
Impact Factor1.376
 Submit
 Author guidelines  Editorial board  Databases and indexing
 Sign up for content alertsSign up

Publishing Collaboration

More info
Wiley-Hindawi
 Author guidelines  Editorial board  Databases and indexing
 Sign up for content alertsSign up

Publishing Collaboration

More info
Wiley-Hindawi