Table of Contents Author Guidelines Submit a Manuscript
Sleep Disorders
Volume 2011 (2011), Article ID 964510, 8 pages
http://dx.doi.org/10.1155/2011/964510
Review Article

Circadian Disruption Leads to Loss of Homeostasis and Disease

1Departamento de Anatomía, Facultad de Medicina, Universidad Nacional Autónoma de México, 04360 Mexico City, DF, Mexico
2Departamento de Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, 04360 Mexico City, DF, Mexico
3Facultad de Ciencias, UASLP, 78210 San Luis Potosí SLP, Mexico

Received 16 July 2011; Revised 22 September 2011; Accepted 24 November 2011

Academic Editor: Arcady A. Putilov

Copyright © 2011 Carolina Escobar et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. R. M. Buijs and A. Kalsbeek, “Hypothalamic integration of central and peripheral clocks,” Nature Reviews Neuroscience, vol. 2, no. 7, pp. 521–526, 2001. View at Publisher · View at Google Scholar · View at Scopus
  2. M. H. Hastings, A. B. Reddy, and E. S. Maywood, “A clockwork web: circadian timing in brain and periphery, in health and disease,” Nature Reviews Neuroscience, vol. 4, no. 8, pp. 649–661, 2003. View at Publisher · View at Google Scholar · View at Scopus
  3. M. U. Gillette and S. M. Reppert, “The hypothalamic suprachiasmatic nuclei: circadian patterns of vasopressin secretion and neuronal activity in vitro,” Brain Research Bulletin, vol. 19, no. 1, pp. 135–139, 1987. View at Google Scholar · View at Scopus
  4. A. Kalsbeek, J. van der Vliet, and R. M. Buijs, “Decrease of endogenous vasopressin release necessary for expression of the circadian rise in plasma corticosterone: a reverse microdialysis study,” Journal of Neuroendocrinology, vol. 8, no. 4, pp. 299–307, 1996. View at Publisher · View at Google Scholar · View at Scopus
  5. R. M. Buijs, F. A. Scheer, F. Kreier et al., “Chapter 20: organization of circadian functions: interaction with the body,” Progress in Brain Research, vol. 153, pp. 341–360, 2006. View at Publisher · View at Google Scholar · View at Scopus
  6. R. M. Buijs, J. Wortel, J. J. van Heerikhuize et al., “Anatomical and functional demonstration of a multisynaptic suprachiasmatic nucleus adrenal (cortex) pathway,” European Journal of Neuroscience, vol. 11, no. 5, pp. 1535–1544, 1999. View at Publisher · View at Google Scholar
  7. S. Perreau-Lenz, A. Kalsbeek, M. L. Garidou et al., “Suprachiasmatic control of melatonin synthesis in rats: inhibitory and stimulatory mechanisms,” European Journal of Neuroscience, vol. 17, no. 2, pp. 221–228, 2003. View at Publisher · View at Google Scholar · View at Scopus
  8. C. Cailotto, J. Lei, J. van der Vliet et al., “Effects of nocturnal light on (clock) gene expression in peripheral organs: a role for the autonomic innervation of the liver,” PLoS One, vol. 4, no. 5, Article ID e5650, 2009. View at Publisher · View at Google Scholar · View at Scopus
  9. F. Kreier, E. Fliers, P. J. Voshol et al., “Selective parasympathetic innervation of subcutaneous and intra-abdominal fat—functional implications,” Journal of Clinical Investigation, vol. 110, no. 9, pp. 1243–1250, 2002. View at Publisher · View at Google Scholar · View at Scopus
  10. J. S. Emens, A. J. Lewy, B. J. Lefler, and R. L. Sack, “Relative coordination to unknown "weak zeitgebers" in free-running blind individuals,” Journal of Biological Rhythms, vol. 20, no. 2, pp. 159–167, 2005. View at Publisher · View at Google Scholar · View at Scopus
  11. T. Roenneberg, T. Kuehnle, M. Juda et al., “Epidemiology of the human circadian clock,” Sleep Medicine Reviews, vol. 11, no. 6, pp. 429–438, 2007. View at Publisher · View at Google Scholar · View at Scopus
  12. E. B. Klerman, D. W. Rimmer, D. J. Dijk, R. E. Kronauer, J. F. Rizzo, and C. A. Czeisler, “Nonphotic entrainment of the human circadian pacemaker,” American Journal of Physiology, Regulatory Integrative and Comparative Physiology, vol. 274, no. 4, pp. R991–R996, 1998. View at Google Scholar · View at Scopus
  13. C. M. Winget, C. W. DeRoshia, K. H. Ogawa, and D. C. Holley, “Significance of light and social cues in the maintenance of temporal organization in man,” Physiologist, vol. 32, no. 1, pp. S94–95, 1989. View at Google Scholar · View at Scopus
  14. R. Chepesiuk, “Missing the dark: health effects of light pollution,” Environmental Health Perspectives, vol. 117, no. 1, pp. A20–A27, 2009. View at Google Scholar · View at Scopus
  15. T. Kantermann and T. Roenneberg, “Is light-at-night a health risk factor or a health risk predictor?” Chronobiology International, vol. 26, no. 6, pp. 1069–1074, 2009. View at Publisher · View at Google Scholar · View at Scopus
  16. R. G. Foster and K. Wulff, “The rhythm of rest and excess,” Nature Reviews Neuroscience, vol. 6, no. 5, pp. 407–414, 2005. View at Publisher · View at Google Scholar · View at Scopus
  17. M. Wittmann, J. Dinich, M. Merrow, and T. Roenneberg, “Social jetlag: misalignment of biological and social time,” Chronobiology International, vol. 23, no. 1-2, pp. 497–509, 2006. View at Publisher · View at Google Scholar · View at Scopus
  18. A. Germain and D. J. Kupfer, “Circadian rhythm disturbances in depression,” Human Psychopharmacology, vol. 23, no. 7, pp. 571–585, 2008. View at Publisher · View at Google Scholar · View at Scopus
  19. A. Wirz-Justice, “Biological rhythm disturbances in mood disorders,” International Clinical Psychopharmacology, vol. 21, no. 1, supplement 1, pp. S11–15, 2006. View at Publisher · View at Google Scholar · View at Scopus
  20. A. J. Davidson, O. Castanon-Cervantes, T. L. Leise, P. C. Molyneux, and M. E. Harrington, “Visualizing jet lag in the mouse suprachiasmatic nucleus and peripheral circadian timing system,” European Journal of Neuroscience, vol. 29, no. 1, pp. 171–180, 2009. View at Publisher · View at Google Scholar · View at Scopus
  21. J. Waterhouse, T. Reilly, G. Atkinson, and B. Edwards, “Jet lag: trends and coping strategies,” Lancet, vol. 369, no. 9567, pp. 1117–1129, 2007. View at Publisher · View at Google Scholar · View at Scopus
  22. C. I. Eastman, C. J. Gazda, H. J. Burgess, S. J. Crowley, and L. F. Fogg, “Advancing circadian rhythms before eastward flight: a strategy to prevent or reduce jet lag,” Sleep, vol. 28, no. 1, pp. 33–44, 2005. View at Google Scholar · View at Scopus
  23. B. P. Kolla and R. R. Auger, “Jet lag and shift work sleep disorders: how to help reset the internal clock,” Cleveland Clinic Journal of Medicine, vol. 78, no. 10, pp. 675–684, 2011. View at Publisher · View at Google Scholar
  24. T. Akerstedt and K. P. Wright, “Sleep loss and fatigue in shift work and shift work disorder,” Sleep Medicine Clinics, vol. 4, no. 2, pp. 257–271, 2009. View at Publisher · View at Google Scholar · View at Scopus
  25. G. Costa, E. Haus, and R. Stevens, “Shift work and cancer—considerations on rationale, mechanisms, and epidemiology,” Scandinavian Journal of Work, Environment and Health, vol. 36, no. 2, pp. 163–179, 2010. View at Google Scholar · View at Scopus
  26. E. Haus and M. Smolensky, “Biological clocks and shift work: circadian dysregulation and potential long-term effects,” Cancer Causes and Control, vol. 17, no. 4, pp. 489–500, 2006. View at Publisher · View at Google Scholar · View at Scopus
  27. S. Davis, D. K. Mirick, and R. G. Stevens, “Night shift work, light at night, and risk of breast cancer,” Journal of the National Cancer Institute, vol. 93, no. 20, pp. 1557–1562, 2002. View at Google Scholar · View at Scopus
  28. A. Knutsson, “Health disorders of shift workers,” Occupational Medicine, vol. 53, no. 2, pp. 103–108, 2003. View at Publisher · View at Google Scholar · View at Scopus
  29. B. H. Karlsson, A. K. Knutsson, B. O. Lindahl, and L. S. Alfredsson, “Metabolic disturbances in male workers with rotating three-shift work. Result of the WOLF study,” International Archives of Occupational and Environmental Health, vol. 76, no. 6, pp. 424–430, 2003. View at Publisher · View at Google Scholar · View at Scopus
  30. L. Weibel, K. Spiegel, M. Follenius, J. Ehrhart, and G. Brandenberger, “Internal dissociation of the circadian markers of the cortisol rhythm in night workers,” American Journal of Physiology, Endocrinology and Metabolism, vol. 270, no. 4, pp. E608–E613, 1996. View at Google Scholar · View at Scopus
  31. K. Spiegel, L. Weibel, C. Gronfier, G. Brandenberger, and M. Follenius, “Twenty-four-hour prolactin profiles in night workers,” Chronobiology International, vol. 13, no. 4, pp. 283–293, 1996. View at Google Scholar · View at Scopus
  32. G. Costa, “The problem: shiftwork,” Chronobiology International, vol. 14, no. 2, pp. 89–98, 1997. View at Google Scholar · View at Scopus
  33. C. Vetter, M. Juda, D. Lang, A. Wojtysiak, and T. Roenneberg, “Blue-enriched office light competes with natural light as a zeitgeber,” Scandinavian Journal of Work, Environment and Health, vol. 37, no. 5, pp. 437–445, 2011. View at Publisher · View at Google Scholar
  34. D. B. Boivin, J. F. Duffy, R. E. Kronauer, and C. A. Czeisler, “Sensitivity of the human circadian pacemaker to moderately bright light,” Journal of Biological Rhythms, vol. 9, no. 3-4, pp. 315–331, 1994. View at Google Scholar · View at Scopus
  35. K. J. Navara and R. J. Nelson, “The dark side of light at night: physiological, epidemiological, and ecological consequences,” Journal of Pineal Research, vol. 43, no. 3, pp. 215–224, 2007. View at Publisher · View at Google Scholar · View at Scopus
  36. A. Dominguez-Rodriguez, P. Abreu-Gonzalez, J. J. Sanchez-Sanchez, J. C. Kaski, and R. J. Reiter, “Melatonin and circadian biology in human cardiovascular disease,” Journal of Pineal Research, vol. 49, no. 1, pp. 14–22, 2010. View at Publisher · View at Google Scholar · View at Scopus
  37. E. Filipski, P. Subramanian, J. Carrière, C. Guettier, H. Barbason, and F. Lévi, “Circadian disruption accelerates liver carcinogenesis in mice,” Mutation Research, vol. 680, no. 1-2, pp. 95–105, 2009. View at Publisher · View at Google Scholar · View at Scopus
  38. F. Lévi, E. Filipski, I. Iurisci, X. M. Li, and P. Innominato, “Cross-talks between circadian timing system and cell division cycle determine cancer biology and therapeutics,” Cold Spring Harbor Symposia on Quantitative Biology, vol. 72, pp. 465–475, 2007. View at Publisher · View at Google Scholar · View at Scopus
  39. E. S. Schernhammer, F. Laden, F. E. Speizer et al., “Rotating night shifts and risk of breast cancer in women participating in the nurses' health study,” Journal of the National Cancer Institute, vol. 93, no. 20, pp. 1563–1568, 2001. View at Google Scholar · View at Scopus
  40. T. Kubo, K. Ozasa, K. Mikami et al., “Prospective cohort study of the risk of prostate cancer among rotating-shift workers: findings from the Japan Collaborative Cohort Study,” American Journal of Epidemiology, vol. 164, no. 6, pp. 549–555, 2006. View at Publisher · View at Google Scholar · View at Scopus
  41. L. Tenkanen, T. Sjöblom, and M. Härmä, “Joint effect of shift work and adverse life-style factors on the risk of coronary heart disease,” Scandinavian Journal of Work, Environment and Health, vol. 24, no. 5, pp. 351–357, 1998. View at Google Scholar
  42. Y. Li, Y. Sato, and N. Yamaguchi, “Shift work and the risk of metabolic syndrome,” International Journal of Occupational and Environmental Health, vol. 17, no. 2, pp. 154–160, 2011. View at Google Scholar
  43. B. Karlsson, A. Knutsson, and B. Lindahl, “Is there an association between shift work and having a metabolic syndrome? Results from a population based study of 27,485 people,” Occupational and Environmental Medicine, vol. 58, no. 11, pp. 747–752, 2001. View at Publisher · View at Google Scholar · View at Scopus
  44. L. C. Antunes, R. Levandovski, G. Dantas, W. Caumo, and M. P. Hidalgo, “Obesity and shift work: chronobiological aspects,” Nutrition Research Reviews, vol. 23, no. 1, pp. 155–168, 2010. View at Publisher · View at Google Scholar · View at Scopus
  45. L. -L. Tsai, Y. -C. Tsai, K. Hwang, Y. -W. Huang, and J. -E. Tzeng, “Repeated light-dark shifts speed up body weight gain in male F344 rats,” American Journal of Physiology, Endocrinology and Metabolism, vol. 289, no. 2 52-2, pp. E212–E217, 2005. View at Publisher · View at Google Scholar
  46. M. Ángeles-Castellanos, J. M. Amaya, R. Salgado-Delgado, R. M. Buijs, and C. Escobar, “Scheduled food hastens re-entrainment more than melatonin does after a 6-h phase advance of the light-dark cycle in rats,” Journal of Biological Rhythms, vol. 26, no. 4, pp. 324–334, 2011. View at Publisher · View at Google Scholar
  47. S. Yamazaki, R. Numano, M. Abe et al., “Resetting central and peripheral circadian oscillators in transgenic rats,” Science, vol. 288, no. 5466, pp. 682–685, 2000. View at Google Scholar · View at Scopus
  48. M. Nagano, A. Adachi, K. I. Nakahama et al., “An abrupt shift in the day/night cycle causes desynchrony in the mammalian circadian center,” Journal of Neuroscience, vol. 23, no. 14, pp. 6141–6151, 2003. View at Google Scholar · View at Scopus
  49. A. B. Reddy, M. D. Field, E. S. Maywood, and M. H. Hastings, “Differential resynchronisation of circadian clock gene expression within the suprachiasmatic nuclei of mice subjected to experimental jet lag,” Journal of Neuroscience, vol. 22, no. 17, pp. 7326–7330, 2002. View at Google Scholar · View at Scopus
  50. I. Bartol-Munier, S. Gourmelen, P. Pevet, and E. Challet, “Combined effects of high-fat feeding and circadian desynchronization,” International Journal of Obesity, vol. 30, no. 1, pp. 60–67, 2006. View at Publisher · View at Google Scholar · View at Scopus
  51. G. Cornélissen, J. Halberg, F. Halberg et al., “Schedule shifts, cancer and longevity: good, bad or indifferent?” Journal of Experimental Therapeutics and Oncology, vol. 7, no. 4, pp. 263–273, 2008. View at Google Scholar
  52. E. M. Gibson, C. Wang, S. Tjho, N. Khattar, and L. J. Kriegsfeld, “Experimental 'jet lag' inhibits adult neurogenesis and produces long-term cognitive deficits in female hamsters,” PLoS One, vol. 5, no. 12, Article ID e15267, 2010. View at Publisher · View at Google Scholar · View at Scopus
  53. H. O. De La Iglesia, T. Cambras, W. J. Schwartz, and A. Díez-Noguera, “Forced desynchronization of dual circadian oscillators within the rat suprachiasmatic nucleus,” Current Biology, vol. 14, no. 9, pp. 796–800, 2004. View at Publisher · View at Google Scholar · View at Scopus
  54. T. Cambras, J. R. Weller, M. Anglès-Pujoràs et al., “Circadian desynchronization of core body temperature and sleep stages in the rat,” Proceedings of the National Academy of Sciences of the United States of America, vol. 104, no. 18, pp. 7634–7639, 2007. View at Publisher · View at Google Scholar · View at Scopus
  55. I. N. Karatsoreos, S. Bhagat, E. B. Bloss, J. H. Morrison, and B. S. McEwen, “Disruption of circadian clocks has ramifications for metabolism, brain, and behavior,” Proceedings of the National Academy of Sciences of the United States of America, vol. 108, no. 4, pp. 1657–1662, 2011. View at Publisher · View at Google Scholar
  56. G. E. Pickard and F. W. Turek, “Splitting of the circadian rhythm of activity is abolished by unilateral lesions of the suprachiasmatic nuclei,” Science, vol. 215, no. 4536, pp. 1119–1121, 1982. View at Google Scholar · View at Scopus
  57. G. E. Pickard, F. W. Turek, and P. J. Sollars, “Light intensity and splitting in the golden hamster,” Physiology and Behavior, vol. 54, no. 1, pp. 1–5, 1993. View at Publisher · View at Google Scholar · View at Scopus
  58. H. Ohta, S. Yamazaki, and D. G. McMahon, “Constant light desynchronizes mammalian clock neurons,” Nature Neuroscience, vol. 8, no. 3, pp. 267–269, 2005. View at Publisher · View at Google Scholar · View at Scopus
  59. W. P. Ma, J. Cao, M. Tian et al., “Exposure to chronic constant light impairs spatial memory and influences long-term depression in rats,” Neuroscience Research, vol. 59, no. 2, pp. 224–230, 2007. View at Publisher · View at Google Scholar · View at Scopus
  60. V. M. Cassone, M. J. Chesworth, and S. M. Armstrong, “Entrainment of rat circadian rhythms by daily injection of melatonin depends upon the hypothalamic suprachiasmatic nuclei,” Physiology and Behavior, vol. 36, no. 6, pp. 1111–1121, 1986. View at Google Scholar
  61. K. R. Larsen, P. Barattini, M. T. Dayton, and J. G. Moore, “Effect of constant light on rhythmic gastric functions in fasting rats,” Digestive Diseases and Sciences, vol. 39, no. 4, pp. 678–688, 1994. View at Google Scholar · View at Scopus
  62. D. E. Blask, R. T. Dauchy, L. A. Sauer, J. A. Krause, and G. C. Brainard, “Light during darkness, melatonin suppression and cancer progression,” Neuroendocrinology Letters, vol. 23, supplement 2, pp. 52–56, 2002. View at Google Scholar
  63. L. E. Anderson, J. E. Morris, L. B. Sasser, and R. G. Stevens, “Effect of constant light on DMBA mammary tumorigenesis in rats,” Cancer Letters, vol. 148, no. 2, pp. 121–126, 2000. View at Publisher · View at Google Scholar · View at Scopus
  64. S. A. Briaud, B. L. Zhang, and F. Sannajust, “Continuous light exposure and sympathectomy suppress circadian rhythm of blood pressure in rats,” Journal of Cardiovascular Pharmacology and Therapeutics, vol. 9, no. 2, pp. 97–105, 2004. View at Publisher · View at Google Scholar · View at Scopus
  65. C. H. Wideman and H. M. Murphy, “Constant light induces alterations in melatonin levels, food intake, feed efficiency, visceral adiposity, and circadian rhythms in rats,” Nutritional Neuroscience, vol. 12, no. 5, pp. 233–240, 2009. View at Publisher · View at Google Scholar · View at Scopus
  66. T. Cambras, L. Castejón, and A. Díez-Noguera, “Social interaction and sex differences influence rat temperature circadian rhythm under LD cycles and constant light,” Physiology and Behavior, vol. 103, no. 3-4, pp. 365–371, 2011. View at Publisher · View at Google Scholar
  67. G. Atkinson, B. Edwards, T. Reilly, and J. Waterhouse, “Exercise as a synchroniser of human circadian rhythms: an update and discussion of the methodological problems,” European Journal of Applied Physiology, vol. 99, no. 4, pp. 331–341, 2007. View at Publisher · View at Google Scholar · View at Scopus
  68. R. Salgado-Delgado, M. Ángeles-Castellanos, M. R. Buijs, and C. Escobar, “Internal desynchronization in a model of night-work by forced activity in rats,” Neuroscience, vol. 154, no. 3, pp. 922–931, 2008. View at Publisher · View at Google Scholar · View at Scopus
  69. R. Salgado-Delgado, S. Nadia, M. Angeles-Castellanos, R. M. Buijs, and C. Escobar, “In a rat model of night work, activity during the normal resting phase produces desynchrony in the hypothalamus,” Journal of Biological Rhythms, vol. 25, no. 6, pp. 421–431, 2010. View at Publisher · View at Google Scholar · View at Scopus
  70. F. A. J. L. Scheer, M. F. Hilton, C. S. Mantzoros, and S. A. Shea, “Adverse metabolic and cardiovascular consequences of circadian misalignment,” Proceedings of the National Academy of Sciences of the United States of America, vol. 106, no. 11, pp. 4453–4458, 2009. View at Publisher · View at Google Scholar · View at Scopus
  71. G. M. Brown, S. R. Pandi-Perumal, I. Trakht, and D. P. Cardinali, “Melatonin and its relevance to jet lag,” Travel Medicine and Infectious Disease, vol. 7, no. 2, pp. 69–81, 2009. View at Publisher · View at Google Scholar · View at Scopus
  72. D. R. Weaver, J. H. Stehle, E. G. Stopa, and S. M. Reppert, “Melatonin receptors in human hypothalamus and pituitary: implications for circadian and reproductive responses to melatonin,” Journal of Clinical Endocrinology and Metabolism, vol. 76, no. 2, pp. 295–301, 1993. View at Publisher · View at Google Scholar · View at Scopus
  73. C. Castillo, P. Molyneux, R. Carlson, and M. E. Harrington, “Restricted wheel access following a light cycle inversion slows re-entrainment without internal desynchrony as measured in Per2Luc mice,” Neuroscience, vol. 182, pp. 169–176, 2011. View at Publisher · View at Google Scholar
  74. U. Holmback, A. Forslund, J. Forslund et al., “Metabolic responses to nocturnal eating in men are affected by sources of dietary energy,” Journal of Nutrition, vol. 132, no. 7, pp. 1892–1899, 2002. View at Google Scholar
  75. K. J. Vener, S. Szabo, and J. G. Moore, “The effect of shift work on gastrointestinal (GI) function: a review,” Chronobiologia, vol. 16, no. 4, pp. 421–439, 1989. View at Google Scholar · View at Scopus
  76. S. Al-Naimi, S. M. Hampton, P. Richard, C. Tzung, and L. M. Morgan, “Postprandial metabolic profiles following meals and snacks eaten during simulated night and day shift work,” Chronobiology International, vol. 21, no. 6, pp. 937–947, 2004. View at Publisher · View at Google Scholar · View at Scopus
  77. L. Q. Qin, J. Li, Y. Wang, J. Wang, J. Y. Xu, and T. Kaneko, “The effects of nocturnal life on endocrine circadian patterns in healthy adults,” Life Sciences, vol. 73, no. 19, pp. 2467–2475, 2003. View at Publisher · View at Google Scholar · View at Scopus
  78. D. M. Arble, J. Bass, A. D. Laposky, M. H. Vitaterna, and F. W. Turek, “Circadian timing of food intake contributes to weight gain,” Obesity, vol. 17, no. 11, pp. 2100–2102, 2009. View at Publisher · View at Google Scholar · View at Scopus
  79. R. Salgado-Delgado, M. Angeles-Castellanos, N. Saderi, R. M. Buijs, and C. Escobar, “Food intake during the normal activity phase prevents obesity and circadian desynchrony in a rat model of night work,” Endocrinology, vol. 151, no. 3, pp. 1019–1029, 2010. View at Publisher · View at Google Scholar · View at Scopus
  80. K. Spiegel, E. Tasali, R. Leproult, and E. Van Cauter, “Effects of poor and short sleep on glucose metabolism and obesity risk,” Nature Reviews Endocrinology, vol. 5, no. 5, pp. 253–261, 2009. View at Publisher · View at Google Scholar · View at Scopus
  81. K. Spiegel, R. Leproult, M. L'Hermite-Balériaux, G. Copinschi, P. D. Penev, and E. Van Cauter, “Leptin levels are dependent on sleep duration: relationships with sympathovagal balance, carbohydrate regulation, cortisol, and thyrotropin,” Journal of Clinical Endocrinology and Metabolism, vol. 89, no. 11, pp. 5762–5771, 2004. View at Publisher · View at Google Scholar · View at Scopus
  82. J. E. Gangwisch, S. B. Heymsfield, B. Boden-Albala et al., “Sleep duration as a risk factor for diabetes incidence in a large US sample,” Sleep, vol. 30, no. 12, pp. 1667–1673, 2007. View at Google Scholar · View at Scopus
  83. L. K. Fonken, J. L. Workman, J. C. Walton et al., “Light at night increases body mass by shifting the time of food intake,” Proceedings of the National Academy of Sciences of the United States of America, vol. 107, no. 43, pp. 18664–18669, 2010. View at Publisher · View at Google Scholar · View at Scopus
  84. W. Nelson and F. Halberg, “Schedule-shifts, circadian rhythms and lifespan of freely-feeding and meal-fed mice,” Physiology and Behavior, vol. 38, no. 6, pp. 781–788, 1986. View at Google Scholar
  85. W. Nelson, “Food restriction, circadian disorder and longevity of rats and mice,” Journal of Nutrition, vol. 118, no. 3, pp. 284–289, 1988. View at Google Scholar · View at Scopus
  86. O. Froy and R. Miskin, “Effect of feeding regimens on circadian rhythms: implications for aging and longevity,” Aging, vol. 2, no. 1, pp. 7–27, 2010. View at Google Scholar · View at Scopus
  87. C. Escobar, C. Cailotto, M. Angeles-Castellanos, R. S. Delgado, and R. M. Buijs, “Peripheral oscillators: the driving force for food-anticipatory activity,” European Journal of Neuroscience, vol. 30, no. 9, pp. 1665–1675, 2009. View at Publisher · View at Google Scholar · View at Scopus
  88. C. Escobar, M. Díaz-Muñoz, F. Encinas, and R. Aguilar-Roblero, “Persistence of metabolic rhythmicity during fasting and its entrainment by restricted feeding schedules in rats,” American Journal of Physiology, Regulatory Integrative and Comparative Physiology, vol. 274, no. 5, pp. R1309–R1316, 1998. View at Google Scholar · View at Scopus
  89. A. Báez-Ruiz, C. Escobar, R. Aguilar-Roblero, O. Vázquez-Martínez, and M. Díaz-Muñoz, “Metabolic adaptations of liver mitochondria during restricted feeding schedules,” American Journal of Physiology, Gastrointestinal and Liver Physiology, vol. 289, no. 6, pp. G1015–G1023, 2005. View at Publisher · View at Google Scholar
  90. F. Halberg, M. B. Visscher, and J. J. Bittner, “Eosinophil rhyth in mice: range of occurrence; effects of illumination, feeding and adrenalectomy,” American Journal of Physiology, vol. 174, pp. 109–122, 1953. View at Google Scholar
  91. M. Angeles-Castellanos, J. Mendoza, and C. Escobar, “Restricted feeding schedules phase shift daily rhythms of c-Fos and protein Per1 immunoreactivity in corticolimbic regions in rats,” Neuroscience, vol. 144, no. 1, pp. 344–355, 2007. View at Publisher · View at Google Scholar · View at Scopus
  92. F. Damiola, N. Le Minli, N. Preitner, B. Kornmann, F. Fleury-Olela, and U. Schibler, “Restricted feeding uncouples circadian oscillators in peripheral tissues from the central pacemaker in the suprachiasmatic nucleus,” Genes and Development, vol. 14, no. 23, pp. 2950–2961, 2000. View at Publisher · View at Google Scholar · View at Scopus
  93. R. Hara, K. Wan, H. Wakamatsu et al., “Restricted feeding entrains liver clock without participation of the suprachiasmatic nucleus,” Genes to Cells, vol. 6, no. 3, pp. 269–278, 2001. View at Publisher · View at Google Scholar · View at Scopus
  94. T. Wu, Y. Jin, Y. Ni, D. Zhang, H. Kato, and Z. Fu, “Effects of light cues on re-entrainment of the food-dominated peripheral clocks in mammals,” Gene, vol. 419, no. 1-2, pp. 27–34, 2008. View at Publisher · View at Google Scholar · View at Scopus