Scientific Programming
 Journal metrics
Acceptance rate27%
Submission to final decision66 days
Acceptance to publication33 days
CiteScore2.300
Impact Factor0.963

Health Analysis of Footballer Using Big Data and Deep Learning

Read the full article

 Journal profile

Scientific Programming provides a forum for research results in, and practical experience with, software engineering environments, tools, languages, and models of computation aimed specifically at supporting scientific and engineering computing.

 Editor spotlight

Chief Editor, Professor Tramontana, is based at the University of Catania and his research primarily concerns the areas of software engineering and distributed systems.

 Special Issues

We currently have a number of Special Issues open for submission. Special Issues highlight emerging areas of research within a field, or provide a venue for a deeper investigation into an existing research area.

Latest Articles

More articles
Research Article

A Petri Nets Evolution Method that Supports BPMN Model Changes

The correctness of the business process modelling notation (BPMN) is essential for software success, and the BPMN formalization is the foundation of the correctness verification process. However, dynamically adapting the formalized BPMN model to changes in the BPMN model and protecting tokens from being lost in the remapping formalization are the main limitations of the BPMN formalization under changing business requirements. To overcome these limitations, an approach for evolving a Petri nets model according to the BPMN changes is proposed in this paper. In this approach, a check algorithm is designed to identify the differences between the original BPMN model and the updated BPMN model. Then, the evolution rules of the extended Petri nets (EPN) model are defined according to the results of the checking program. Finally, these evolution rules are described in the query/view/transformation operational mapping (QVTo) language and implemented in the Eclipse platform. We demonstrate the effectiveness of the evolution of the BPMN formalization using a case study of the Web Payment business system. Moreover, the dynamic evolution of the BPMN formalization can maintain the consistency between the original model and the updated model, and this consistency has been successfully verified.

Research Article

AGV Scheduling Optimization for Medical Waste Sorting System

The dramatic increase in medical waste has put a severe strain on sorting operations. Traditional manual order picking is extremely susceptible to infection spread among workers and picking errors, while automated medical waste sorting systems can handle large volumes of medical waste efficiently and reliably. This paper investigates the optimization problem in the automated medical waste sorting system by considering the operational flow of medical waste. For this purpose, a mixed-integer programming model is developed to optimize the assignment among medical waste, presorting stations, and AGVs. An effective variable neighborhood search based on dynamic programming algorithm is proposed, and extensive numerical experiments are conducted. It is found that the proposed algorithm can efficiently solve the optimization problem, and the sensitivity analysis gives recommendations for the speed setting of the conveyor.

Research Article

A Multilayer Perceptron Neural Network with Selective-Data Training for Flight Arrival Delay Prediction

Flight delay is the most common preoccupation of aviation stakeholders around the world. Airlines, which suffer from a monetary and customer loyalty loss, are the most affected. Various studies have attempted to analyze and solve flight delays using machine learning algorithms. This research aims to predict flights’ arrival delay using Artificial Neural Network (ANN). We applied a MultiLayer Perceptron (MLP) to train and test our data. Two approaches have been adopted in our work. In the first one, we used historical flight data extracted from Bureau of Transportation Statistics (BTS). The second approach improves the efficiency of the model by applying selective-data training. It consists of selecting only most relevant instances from the training dataset which are delayed flights. According to BTS, a flight whose difference between scheduled and actual arrival times is 15 minutes or greater is considered delayed. Departure delays and flight distance proved to be very contributive to flight delays. An adjusted and optimized hyperparameters using grid search technique helped us choose the right architecture of the network and have a better accuracy and less error than the existing literature. The results of both traditional and selective training were compared. The efficiency and time complexity of the second method are compared against those of the traditional training procedure. The neural network MLP was able to predict flight arrival delay with a coefficient of determination of 0.9048, and the selective procedure achieved a time saving and a better score of 0.9560. To enhance the reliability of the proposed method, the performance of the MLP was compared with that of Gradient Boosting (GB) and Decision Trees (DT). The result is that the MLP outperformed all existing benchmark methods.

Research Article

Learning Behavior Analysis Using Clustering and Evolutionary Error Correcting Output Code Algorithms in Small Private Online Courses

In recent years, online and offline teaching activities have been combined by the Small Private Online Course (SPOC) teaching activities, which can achieve a better teaching result. Therefore, colleges around the world have widely carried out SPOC-based blending teaching. Particularly in this year’s epidemic, the online education platform has accumulated lots of education data. In this paper, we collected the student behavior log data during the blending teaching process of the “College Information Technology Fundamentals” course of three colleges to conduct student learning behavior analysis and learning outcome prediction. Firstly, data collection and preprocessing are carried out; cluster analysis is performed by using k-means algorithms. Four typical learning behavior patterns have been obtained from previous research, and these patterns were analyzed in terms of teaching videos, quizzes, and platform visits. Secondly, a multiclass classification framework, which combines a feature selection method based on genetic algorithm (GA) with the error correcting output code (ECOC) method, is designed for training the classification model to achieve the prediction of grade levels of students. The experimental results show that the multiclass classification method proposed in this paper can effectively predict the grade of performance, with an average accuracy rate of over 75%. The research results help to implement personalized teaching for students with different grades and learning patterns.

Research Article

Applied Research of Knowledge in the Field of Artificial Intelligence in the Intelligent Retrieval of Teaching Resources

In the development process of education informatization, digital teaching resources continue to grow, and how to manage and organize massive teaching resources has become a key issue for teaching staff. An efficient and accurate search system is an important part of the teaching resource service system. The use of intelligent search engines can search teaching resources comprehensively and efficiently, and the artificial intelligence search engine provides a reliable and convenient solution for the design and development of intelligent search systems. The article analyzes the design principles and technical standards of the intelligent search system, expounds the system’s functional architecture and database design, and introduces the realization process and principles of the search system. By analyzing the characteristics of basic education resources and existing automatic abstracting methods, this paper proposes to integrate the calculated feature word weights in the field of basic education into the algorithm for calculating the weights of abstract sentences and simultaneously examine the sentence position, sentence length, and other texts. There is an automatic summarization algorithm for surface statistics. This article also introduces the search design ideas and implementation steps based on artificial intelligence, makes a scientific evaluation and summary of the actual situation of the automatic abstract system running in the basic education resource search engine, and looks forward to the next improvement work.

Research Article

Impact of Parameter Tuning for Optimizing Deep Neural Network Models for Predicting Software Faults

Deep neural network models built by the appropriate design decisions are crucial to obtain the desired classifier performance. This is especially desired when predicting fault proneness of software modules. When correctly identified, this could help in reducing the testing cost by directing the efforts more towards the modules identified to be fault prone. To be able to build an efficient deep neural network model, it is important that the parameters such as number of hidden layers, number of nodes in each layer, and training details such as learning rate and regularization methods be investigated in detail. The objective of this paper is to show the importance of hyperparameter tuning in developing efficient deep neural network models for predicting fault proneness of software modules and to compare the results with other machine learning algorithms. It is shown that the proposed model outperforms the other algorithms in most cases.

Scientific Programming
 Journal metrics
Acceptance rate27%
Submission to final decision66 days
Acceptance to publication33 days
CiteScore2.300
Impact Factor0.963
 Submit