Table of Contents Author Guidelines Submit a Manuscript
Scientific Programming
Volume 7, Issue 1, Pages 67-81

VFC: The Vienna Fortran Compiler

Siegfried Benkner

Institute for Software Technology and Parallel Systems, University of Vienna, Liechtenstein Strasse 22, A‐1090 Vienna, Austria

Copyright © 1999 Hindawi Publishing Corporation. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


High Performance Fortran (HPF) offers an attractive high‐level language interface for programming scalable parallel architectures providing the user with directives for the specification of data distribution and delegating to the compiler the task of generating an explicitly parallel program. Available HPF compilers can handle regular codes quite efficiently, but dramatic performance losses may be encountered for applications which are based on highly irregular, dynamically changing data structures and access patterns. In this paper we introduce the Vienna Fortran Compiler (VFC), a new source‐to‐source parallelization system for HPF+, an optimized version of HPF, which addresses the requirements of irregular applications. In addition to extended data distribution and work distribution mechanisms, HPF+ provides the user with language features for specifying certain information that decisively influence a program’s performance. This comprises data locality assertions, non‐local access specifications and the possibility of reusing runtime‐generated communication schedules of irregular loops. Performance measurements of kernels from advanced applications demonstrate that with a high‐level data parallel language such as HPF+ a performance close to hand‐written message‐passing programs can be achieved even for highly irregular codes.