Table of Contents Author Guidelines Submit a Manuscript
Scientific Programming
Volume 8 (2000), Issue 2, Pages 73-93

P3T+: A Performance Estimator for Distributed and Parallel Programs

T. Fahringer and A. Požgaj

Institute for Software Science, University of Vienna, Liechtensteinstrasse 22, A-1090 Vienna, Austria

Received 27 March 2001; Accepted 27 March 2001

Copyright © 2000 Hindawi Publishing Corporation. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


Developing distributed and parallel programs on today's multiprocessor architectures is still a challenging task. Particular distressing is the lack of effective performance tools that support the programmer in evaluating changes in code, problem and machine sizes, and target architectures. In this paper we introduce P3T+ which is a performance estimator for mostly regular HPF (High Performance Fortran) programs but partially covers also message passing programs (MPI). P3T+ is unique by modeling programs, compiler code transformations, and parallel and distributed architectures. It computes at compile-time a variety of performance parameters including work distribution, number of transfers, amount of data transferred, transfer times, computation times, and number of cache misses. Several novel technologies are employed to compute these parameters: loop iteration spaces, array access patterns, and data distributions are modeled by employing highly effective symbolic analysis. Communication is estimated by simulating the behavior of a communication library used by the underlying compiler. Computation times are predicted through pre-measured kernels on every target architecture of interest. We carefully model most critical architecture specific factors such as cache lines sizes, number of cache lines available, startup times, message transfer time per byte, etc. P3T+ has been implemented and is closely integrated with the Vienna High Performance Compiler (VFC) to support programmers develop parallel and distributed applications. Experimental results for realistic kernel codes taken from real-world applications are presented to demonstrate both accuracy and usefulness of P3T+.