Abstract

The Large Atmospheric Computation on the Earth Simulator (LACES) project is a joint initiative between Canadian and Japanese meteorological services and academic institutions that focuses on the high resolution simulation of Hurricane Earl (1998). The unique aspect of this effort is the extent of the computational domain, which covers all of North America and Europe with a grid spacing of 1 km. The Canadian Mesoscale Compressible Community (MC2) model is shown to parallelize effectively on the Japanese Earth Simulator (ES) supercomputer; however, even using the extensive computing resources of the ES Center (ESC), the full simulation for the majority of Hurricane Earl's lifecycle takes over eight days to perform and produces over 5.2 TB of raw data. Preliminary diagnostics show that the results of the LACES simulation for the tropical stage of Hurricane Earl's lifecycle compare well with available observations for the storm. Further studies involving advanced diagnostics have commenced, taking advantage of the uniquely large spatial extent of the high resolution LACES simulation to investigate multiscale interactions in the hurricane and its environment. It is hoped that these studies will enhance our understanding of processes occurring within the hurricane and between the hurricane and its planetary-scale environment.