Scientific Programming

Scientific Programming / 2006 / Article

Open Access

Volume 14 |Article ID 731428 | https://doi.org/10.1155/2006/731428

Damian W.I. Rouson, Xiaofeng Xu, Karla Morris, "Formal Constraints on Memory Management for Composite Overloaded Operations", Scientific Programming, vol. 14, Article ID 731428, 14 pages, 2006. https://doi.org/10.1155/2006/731428

Formal Constraints on Memory Management for Composite Overloaded Operations

Received24 Aug 2006
Accepted24 Aug 2006

Abstract

The memory management rules for abstract data type calculus presented by Rouson, Morris & Xu [15] are recast as formal statements in the Object Constraint Language (OCL) and applied to the design of a thermal energy equation solver. One set of constraints eliminates memory leaks observed in composite overloaded expressions with three current Fortran 95/2003 compilers. A second set of constraints ensures economical memory recycling. The constraints are preconditions, postconditions and invariants on overloaded operators and the objects they receive and return. It is demonstrated that systematic run-time assertion checking inspired by the formal constraints facilitated the pinpointing of an exceptionally hard-to-reproduce compiler bug. It is further demonstrated that the interplay between OCL's modeling capabilities and Fortran's programming capabilities led to a conceptual breakthrough that greatly improved the readability of our code by facilitating operator overloading. The advantages and disadvantages of our memory management rules are discussed in light of other published solutions [11,19]. Finally, it is demonstrated that the run-time assertion checking has a negligible impact on performance.

Copyright © 2006 Hindawi Publishing Corporation. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


More related articles

 PDF Download Citation Citation
 Order printed copiesOrder
Views69
Downloads316
Citations

Related articles

We are committed to sharing findings related to COVID-19 as quickly as possible. We will be providing unlimited waivers of publication charges for accepted research articles as well as case reports and case series related to COVID-19. Review articles are excluded from this waiver policy. Sign up here as a reviewer to help fast-track new submissions.