Table of Contents Author Guidelines Submit a Manuscript
Scientific Programming
Volume 14 (2006), Issue 1, Pages 27-40

Formal Constraints on Memory Management for Composite Overloaded Operations

Damian W.I. Rouson,1 Xiaofeng Xu,2 and Karla Morris3

1US Naval Research Laboratory, 4555 Overlook Ave. SW, Washington, DC 20375, USA
2Department of Fire Protection Engineering, University of Maryland, College Park, MD 20742, USA
3Mechanical Engineering Dept., The Graduate Center of The City University of New York, Fifth Ave. at 34 th St. New York, NY, USA

Received 24 August 2006; Accepted 24 August 2006

Copyright © 2006 Hindawi Publishing Corporation. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


The memory management rules for abstract data type calculus presented by Rouson, Morris & Xu [15] are recast as formal statements in the Object Constraint Language (OCL) and applied to the design of a thermal energy equation solver. One set of constraints eliminates memory leaks observed in composite overloaded expressions with three current Fortran 95/2003 compilers. A second set of constraints ensures economical memory recycling. The constraints are preconditions, postconditions and invariants on overloaded operators and the objects they receive and return. It is demonstrated that systematic run-time assertion checking inspired by the formal constraints facilitated the pinpointing of an exceptionally hard-to-reproduce compiler bug. It is further demonstrated that the interplay between OCL's modeling capabilities and Fortran's programming capabilities led to a conceptual breakthrough that greatly improved the readability of our code by facilitating operator overloading. The advantages and disadvantages of our memory management rules are discussed in light of other published solutions [11,19]. Finally, it is demonstrated that the run-time assertion checking has a negligible impact on performance.