Scientific Programming

Scientific Programming / 2010 / Article
Special Issue

Exploring Languages for Expressing Medium to Massive On-Chip Parallelism

View this Special Issue

Open Access

Volume 18 |Article ID 521797 | 15 pages | https://doi.org/10.3233/SPR-2011-0305

Concurrent Collections

Abstract

We introduce the Concurrent Collections (CnC) programming model. CnC supports flexible combinations of task and data parallelism while retaining determinism. CnC is implicitly parallel, with the user providing high-level operations along with semantic ordering constraints that together form a CnC graph. We formally describe the execution semantics of CnC and prove that the model guarantees deterministic computation. We evaluate the performance of CnC implementations on several applications and show that CnC offers performance and scalability equivalent to or better than that offered by lower-level parallel programming models.

Copyright © 2010 Hindawi Publishing Corporation. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


More related articles

612 Views | 446 Downloads | 88 Citations
 PDF  Download Citation  Citation
 Order printed copiesOrder

Related articles

We are committed to sharing findings related to COVID-19 as quickly and safely as possible. Any author submitting a COVID-19 paper should notify us at help@hindawi.com to ensure their research is fast-tracked and made available on a preprint server as soon as possible. We will be providing unlimited waivers of publication charges for accepted articles related to COVID-19. Sign up here as a reviewer to help fast-track new submissions.