Table of Contents Author Guidelines Submit a Manuscript
Scientific Programming
Volume 21, Issue 3-4, Pages 137-148

Direction-Optimizing Breadth-First Search

Scott Beamer, Krste Asanović, and David Patterson

Electrical Engineering and Computer Sciences Department, University of California, Berkeley, CA, USA

Copyright © 2013 Hindawi Publishing Corporation. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


Breadth-First Search is an important kernel used by many graph-processing applications. In many of these emerging applications of BFS, such as analyzing social networks, the input graphs are low-diameter and scale-free. We propose a hybrid approach that is advantageous for low-diameter graphs, which combines a conventional top-down algorithm along with a novel bottom-up algorithm. The bottom-up algorithm can dramatically reduce the number of edges examined, which in turn accelerates the search as a whole. On a multi-socket server, our hybrid approach demonstrates speedups of 3.3–7.8 on a range of standard synthetic graphs and speedups of 2.4–4.6 on graphs from real social networks when compared to a strong baseline. We also typically double the performance of prior leading shared memory (multicore and GPU) implementations.