Table of Contents Author Guidelines Submit a Manuscript
Scientific Programming
Volume 2015, Article ID 172879, 13 pages
http://dx.doi.org/10.1155/2015/172879
Research Article

Link Prediction Methods and Their Accuracy for Different Social Networks and Network Metrics

Department of Informatics, School of Natural and Mathematical Sciences, King’s College London, Strand Campus, London WC2R 2LS, UK

Received 27 February 2014; Revised 21 November 2014; Accepted 21 November 2014

Academic Editor: Jeffrey C. Carver

Copyright © 2015 Fei Gao et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. N. L. Biggs, E. K. Lloyd, and R. J. Wilson, Graph Theory, New York, NY, USA, The Clarendon Press, 2nd edition, 1986. View at MathSciNet
  2. P. Erdős and A. Rényi, “On random graphs. I,” Publicationes Mathematicae Debrecen, vol. 6, pp. 290–297, 1959. View at Google Scholar
  3. P. Erdős and A. Rényi, “On the evolution of random graphs,” Publications of the Mathematical Institute of the Hungarian Academy of Sciences, vol. 5, pp. 17–61, 1960. View at Google Scholar
  4. J. Travers and S. Milgram, “An experimental study of the small world problem,” Sociometry, vol. 32, no. 4, pp. 425–443, 1969. View at Publisher · View at Google Scholar
  5. S. Milgram, “The small world problem,” Psychology Today, vol. 2, pp. 60–67, 1967. View at Google Scholar
  6. D. J. Watts and S. H. Strogatz, “Collective dynamics of ‘small-world’ networks,” Nature, vol. 393, no. 6684, pp. 440–442, 1998. View at Publisher · View at Google Scholar · View at Scopus
  7. A.-L. Barabási and R. Albert, “Emergence of scaling in random networks,” Science, vol. 286, no. 5439, pp. 509–512, 1999. View at Publisher · View at Google Scholar · View at MathSciNet · View at Scopus
  8. H. Jeong, S. P. Mason, A.-L. Barabási, and Z. N. Oltvai, “Lethality and centrality in protein networks,” Nature, vol. 411, no. 6833, pp. 41–42, 2001. View at Publisher · View at Google Scholar · View at Scopus
  9. A. D. King, N. Pržulj, and I. Jurisica, “Protein complex prediction via cost-based clustering,” Bioinformatics, vol. 20, no. 17, pp. 3013–3020, 2004. View at Publisher · View at Google Scholar · View at Scopus
  10. R. Pastor-Satorras and A. Vespignani, “Epidemic spreading in scale-free networks,” Physical Review Letters, vol. 86, no. 14, pp. 3200–3203, 2001. View at Publisher · View at Google Scholar · View at Scopus
  11. Y. Wang, D. Chakrabarti, C. Wang, and C. Faloutsos, “Epidemic spreading in real networks: an eigenvalue viewpoint,” in Proceedings of the 22nd International Symposium on Reliable Distributed Systems (SRDS '03), pp. 25–34, October 2003. View at Publisher · View at Google Scholar · View at Scopus
  12. D. Chakrabarti, Y. Wang, C. Wang, J. Leskovec, and C. Faloutsos, “Epidemic thresholds in real networks,” ACM Transactions on Information and System Security, vol. 10, no. 4, article 1, 26 pages, 2008. View at Publisher · View at Google Scholar · View at Scopus
  13. N. A. Christakis and J. H. Fowler, “The spread of obesity in a large social network over 32 years,” The New England Journal of Medicine, vol. 357, no. 4, pp. 370–379, 2007. View at Publisher · View at Google Scholar · View at Scopus
  14. Z. Huang, X. Li, and H. Chen, “Link prediction approach to collaborative filtering,” in Proceedings of the 5th ACM/IEEE Joint Conference on Digital Libraries (JCDL '05), pp. 141–142, ACM, New York, NY, USA, June 2005. View at Scopus
  15. F. Molnar, “Link prediction analysis in the Wikipedia Collaboration graph,” 2011, http://www.cs.rpi.edu/~magdon/courses/casp/projects/Molnar.pdf.
  16. L. A. Adamic and E. Adar, “Friends and neighbors on the Web,” Social Networks, vol. 25, no. 3, pp. 211–230, 2003. View at Google Scholar · View at Scopus
  17. W. Cukierski, B. Hamner, and B. Yang, “Graph-based features for supervised link prediction,” in Proceedings of the International Joint Conference on Neural Network (IJCNN '11), pp. 1237–1244, August 2011. View at Publisher · View at Google Scholar · View at Scopus
  18. M. Fire, L. Tenenboim, O. Lesser, R. Puzis, L. Rokach, and Y. Elovici, “Link prediction in social networks using computationally efficient topological features,” in Proceedings of the IEEE International Conference on Privacy, Security, Risk and Trust (PASSAT '11) and IEEE International Conference on Social Computing (SocialCom '11), pp. 73–80, Boston, Mass, USA, October 2011. View at Publisher · View at Google Scholar · View at Scopus
  19. K. Juszczyszyn, K. Musiał, and M. Budka, “Link prediction based on Subgraph evolution in dynamic social networks,” in Proceedings of the IEEE International Conference on Privacy, Security, Risk and Trust (PASSAT '11) and IEEE International Conference on Social Computing (SocialCom '11), pp. 27–34, October 2011. View at Publisher · View at Google Scholar · View at Scopus
  20. D. Liben-Nowell and J. Kleinberg, “The link prediction problem for social networks,” in Proceedings of the 12th ACM International Conference on Information and Knowledge Management (CIKM '03), pp. 556–559, ACM, New York, NY, USA, November 2003. View at Scopus
  21. L. Lü and T. Zhou, “Link prediction in complex networks: a survey,” Physica A: Statistical Mechanics and Its Applications, vol. 390, no. 6, pp. 1150–1170, 2011. View at Publisher · View at Google Scholar · View at Scopus
  22. O. J. Mengshoel, R. Desai, A. Chen, and B. Tran, “Will we connect again? Machine learning for link prediction in mobile social networks,” 2013.
  23. Z. Liu, Q.-M. Zhang, L. Lü, and T. Zhou, “Link prediction in complex networks: a local naïve Bayes model,” Europhysics Letters, vol. 96, no. 4, Article ID 48007, 2011. View at Publisher · View at Google Scholar · View at Scopus
  24. R. N. Lichtenwalter, J. T. Lussier, and N. V. Chawla, “New perspectives and methods in link prediction,” in Proceedings of the 16th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining(KDD '10), pp. 243–252, New York, NY, USA, July 2010. View at Publisher · View at Google Scholar · View at Scopus
  25. K. Yu, W. Chu, S. Yu, V. Tresp, and Z. Xu, “Stochastic relational models for discriminative link prediction,” in Advances in Neural Information Processing Systems, pp. 333–340, MIT Press, Boston, Mass, USA, 2007. View at Google Scholar
  26. M. Al Hasan, V. Chaoji, S. Salem, and Z. Mohammed, “Link prediction using supervised learning,” in Proceedings of the SDM 6th workshop on Link Analysis, Counterterrorism and Security, 2006. View at Google Scholar
  27. X.-W. Chen and M. Liu, “Prediction of protein-protein interactions using random decision forest framework,” Bioinformatics, vol. 21, no. 24, pp. 4394–4400, 2005. View at Publisher · View at Google Scholar · View at Scopus
  28. P. Aloy and R. B. Russell, “InterPreTS: protein interaction predictionthrough tertiary structure,” Bioinformatics, vol. 19, no. 1, pp. 161–162, 2003. View at Publisher · View at Google Scholar · View at Scopus
  29. S. Boccaletti, V. Latora, Y. Moreno, M. Chavez, and D.-U. Hwang, “Complex networks: structure and dynamics,” Physics Reports: A Review Section of Physics Letters, vol. 424, no. 4-5, pp. 175–308, 2006. View at Publisher · View at Google Scholar · View at MathSciNet · View at Scopus
  30. M. Budka, K. Juszczyszyn, K. Musial, and A. Musial, “Molecular model of dynamic social network based on e-mail communication,” Social Network Analysis and Mining, vol. 3, no. 3, pp. 543–563, 2013. View at Publisher · View at Google Scholar
  31. C. Guido, A. Chessa, I. Crimaldi, and F. Pammolli, The Evolution of Complex Networks: A New Framework, 2012.
  32. B. Klimt and Y. Yang, “The Enron corpus: a new dataset for email classification research,” in Proceedings of the 15th European Conference on Machine Learning (ECML '04), pp. 217–226, September 2004. View at Scopus
  33. B. Viswanath, A. Mislove, M. Cha, and K. P. Gummadi, “On the evolution of user interaction in Facebook,” in Proceedings of the 2nd ACM SIGCOMM Workshop on Online Social Networks, pp. 37–42, Barcelona, Spain, August 2009. View at Publisher · View at Google Scholar
  34. A. Mislove, H. S. Koppula, K. P. Gummadi, P. Druschel, and B. Bhattacharjee, “Growth of the Flickr social network,” in Proceedings of the Workshop on Online Social Networks, pp. 25–30, 2008.
  35. A. Mislove, H. S. Koppula, K. P. Gummadi, P. Druschel, and B. Bhattacharjee, “Growth of the flickr social network,” in Proceedings of the 1st ACM SIGCOMM Workshop on Social Networks (WOSN '08), pp. 25–30, ACM, August 2008. View at Publisher · View at Google Scholar · View at Scopus
  36. P. Kazienko, K. Musiał, and A. Zgrzywa, “Evaluation of node position based on email communication,” Control and Cybernetics, vol. 38, no. 1, pp. 67–86, 2009. View at Google Scholar · View at Scopus
  37. T. Opsahl, “Triadic closure in two-mode networks: redefining the global and local clustering coefficients,” Social Networks, vol. 35, no. 2, pp. 159–167, 2013. View at Publisher · View at Google Scholar
  38. A. Mislove, Online social networks: measurement, analysis, and applications to distributed information systems [Ph.D. thesis], Rice University, 2009.
  39. A. Mislove, Online social networks: measurement, analysis, and applications to distributed information systems [Ph.D. thesis], Department of Computer Science, Rice University, 2009.
  40. H. R. de Sa and R. B. C. Prudencio, “Supervised link prediction in weighted networks,” in Proceedings of the International Joint Conference on Neural Networks (IJCNN '11), pp. 2281–2288, August 2011.
  41. L. Lü, C.-H. Jin, and T. Zhou, “Similarity index based on local paths for link prediction of complex networks,” Physical Review E, vol. 80, Article ID 046122, 2009. View at Publisher · View at Google Scholar
  42. M. E. J. Newman, “Clustering and preferential attachment in growing networks,” Physical Review E, vol. 64, no. 2, Article ID 025102, 2001. View at Publisher · View at Google Scholar
  43. L. Katz, “A new status index derived from sociometric analysis,” Psychometrika, vol. 18, no. 1, pp. 39–43, 1953. View at Publisher · View at Google Scholar · View at Scopus
  44. G. H. Golub and C. F. Van Loan, Matrix Computations, Johns Hopkins Studies in the Mathematical Sciences, Johns Hopkins University Press, Baltimore, Md, USA, 3rd edition, 1996. View at MathSciNet
  45. T. Sørensen, A Method of Establishing Groups of Equal Amplitude in Plants Ociology Based on Similarity of Species and Its Application to Analyses of The Vegetation on Danish Commons, vol. 5 of Biologiske Skrifter, E. Munksgaard, 1948.
  46. E. Ravasz, A. L. Somera, D. A. Mongru, Z. N. Oltvai, and A.-L. Barabási, “Hierarchical organization of modularity in metabolic networks,” Science, vol. 297, no. 5586, pp. 1551–1555, 2002. View at Publisher · View at Google Scholar · View at Scopus
  47. E. A. Leicht, P. Holme, and M. E. J. Newman, “Vertex similarity in networks,” Physical Review E, vol. 73, no. 2, Article ID 026120, 2006. View at Publisher · View at Google Scholar · View at Scopus
  48. J. A. Hanley and B. J. McNeil, “The meaning and use of the area under a receiver operating characteristic (ROC) curve,” Radiology, vol. 143, no. 1, pp. 29–36, 1982. View at Publisher · View at Google Scholar · View at Scopus
  49. A. Clauset, C. Moore, and M. E. J. Newman, “Hierarchical structure and the prediction of missing links in networks,” Nature, vol. 453, no. 7191, pp. 98–101, 2008. View at Publisher · View at Google Scholar · View at Scopus
  50. J. Kunegis, “KONECT—the koblenz network collection,” in Proceedings of the 22nd International Conference on World Wide Web (WWW '13), pp. 1343–1350, May 2013. View at Scopus
  51. M. E. Newman, “The structure and function of complex networks,” SIAM Review, vol. 45, no. 2, pp. 167–256, 2003. View at Publisher · View at Google Scholar · View at MathSciNet · View at Scopus
  52. J. Kunegis and J. Preusse, “Fairness on the Web: Alternatives to the power law,” in Proceedings of the 3rd Annual ACM Web Science Conference (WebSci '2), pp. 175–184, June 2012. View at Publisher · View at Google Scholar · View at Scopus
  53. J. L. Rodgers and A. W. Nicewander, “Thirteen ways to look at the correlation coefficient,” The American Statistician, vol. 42, no. 1, pp. 59–66, 1988. View at Publisher · View at Google Scholar
  54. M. E. J. Newman, A. L. Barabási, and D. J. Watts, Eds., The Structure and Dynamics of Networks, Princeton Studies in Complexity, Princeton University Press, Princeton, NJ, USA, 2006. View at MathSciNet
  55. R. Bakhshandeh, M. Samadi, Z. Azimifar, and J. Schaeffer, “Degrees of separation in social networks,” in Proceedings of the 4th International Symposium on Combinatorial Search (SoCS '11), pp. 18–23, July 2011. View at Scopus