Table of Contents Author Guidelines Submit a Manuscript
Scientific Programming
Volume 2016 (2016), Article ID 3279423, 15 pages
Research Article

Modeling and Optimization of the Drug Extraction Production Process

1College of Information Science and Engineering, Northeastern University, Shenyang, Liaoning 110004, China
2State Key Laboratory of Synthetical Automation for Process Industries, Northeastern University, Shenyang 110004, China

Received 17 June 2016; Revised 31 August 2016; Accepted 14 September 2016

Academic Editor: Chengyan Yue

Copyright © 2016 Dakuo He et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


Optimized control of the drug extraction production process (DEPP) aims to reduce production costs and improve economic benefit while meeting quality requirements. However, optimization of DEPP is hampered by model uncertainty. Thus, in this paper, a strategy that considers model uncertainty is proposed. Mechanistic modeling of DEPP is first discussed in the context of previous work. The predictive model used for optimization is then developed by simplifying the mechanism. Optimization for a single extraction process is first implemented, but this is found to lead to serious wastage of herbs. Hence, the optimization of a multiextraction process is then conducted. To manage the uncertainty in the model, a data-driven iterative learning control method is introduced to improve the economic benefit by adjusting the operating variables. Finally, fuzzy parameter adjustment is adopted to enhance the convergence rate of the algorithm. The effectiveness of the proposed modeling and optimization strategy is validated through a series of simulations.