Table of Contents Author Guidelines Submit a Manuscript
Stroke Research and Treatment
Volume 2012, Article ID 374098, 8 pages
http://dx.doi.org/10.1155/2012/374098
Review Article

Successfully Climbing the “STAIRs”: Surmounting Failed Translation of Experimental Ischemic Stroke Treatments

1Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M Health Science Center, Bryan, TX 77807, USA
2Sanders-Brown Center on Aging and Department of Anatomy and Neurobiology, University of Kentucky, 430 Sanders Brown Building 800 S. Limestone Street, Lexington, KY 40536, USA
3Department of Neurology, University of Kentucky, 430 Sanders Brown Building 800 S. Limestone Street, Lexington, KY 40536-0230, USA

Received 21 August 2012; Revised 7 November 2012; Accepted 16 December 2012

Academic Editor: Petra Henrich-Noack

Copyright © 2012 Michael P. Kahle and Gregory J. Bix. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. V. L. Roger, A. S. Go, D. M. Lloyd-Jones et al., “Heart disease and stroke statistics—2012 update: a report from the american heart association,” Circulation, vol. 125, no. 1, pp. e2–e220, 2012. View at Google Scholar
  2. N. Chaudhary, A. S. Pandey, and J. J. Gemmete, “Intervention in acute cerebral ischaemic stroke: a review of the role of pharmacological therapies and intra-arterial mechanical thrombectomy devices,” Postgraduate Medical Journal, vol. 87, no. 1032, pp. 714–723, 2011. View at Google Scholar
  3. S. J. Maiser, A. L. Georgiadis, M. F. K. Suri, G. Vazquez, K. Lakshminarayan, and A. I. Qureshi, “Intravenous recombinant tissue plasminogen activator administered after 3 h following onset of ischaemic stroke: a metaanalysis,” International Journal of Stroke, vol. 6, no. 1, pp. 25–32, 2011. View at Publisher · View at Google Scholar · View at Scopus
  4. M. Fisher, “Recommendations for standards regarding preclinical neuroprotective and restorative drug development,” Stroke, vol. 30, no. 12, pp. 2752–2758, 1999. View at Google Scholar · View at Scopus
  5. M. Fisher, G. Feuerstein, D. W. Howells et al., “Update of the stroke therapy academic industry roundtable preclinical recommendations,” Stroke, vol. 40, no. 6, pp. 2244–2250, 2009. View at Publisher · View at Google Scholar · View at Scopus
  6. M. Philip, M. Benatar, M. Fisher, and S. I. Savitz, “Methodological quality of animal studies of neuroprotective agents currently in phase II/III acute ischemic stroke trials,” Stroke, vol. 40, no. 2, pp. 577–581, 2009. View at Publisher · View at Google Scholar · View at Scopus
  7. N. Horie, A. L. Maag, S. A. Hamilton, H. Shichinohe, T. M. Bliss, and G. K. Steinberg, “Mouse model of focal cerebral ischemia using endothelin-1,” Journal of Neuroscience Methods, vol. 173, no. 2, pp. 286–290, 2008. View at Publisher · View at Google Scholar · View at Scopus
  8. L. Belayev, “Overcoming barriers to translation from experimental stroke models,” in Translational Stroke Research, P. A. Lapchak and J. H. Zhang, Eds., vol. 3, chapter 24, pp. 471–492, Springer, 2012. View at Google Scholar
  9. K. Maeda, R. Hata, and K. A. Hossmann, “Differences in the cerebrovascular anatomy of C57Black/6 and SV129 mice,” NeuroReport, vol. 9, no. 7, pp. 1317–1319, 1998. View at Google Scholar · View at Scopus
  10. S. Kelly, J. McCulloch, and K. Horsburgh, “Minimal ischaemic neuronal damage and HSP70 expression in MF1 strain mice following bilateral common carotid artery occlusion,” Brain Research, vol. 914, no. 1-2, pp. 185–195, 2001. View at Publisher · View at Google Scholar · View at Scopus
  11. A. E. Willing, “Experimental models: help or hindrance,” Stroke, vol. 40, no. 3, pp. S152–S154, 2009. View at Publisher · View at Google Scholar · View at Scopus
  12. B. W. McColl, H. V. Carswell, J. McCulloch, and K. Horsburgh, “Extension of cerebral hypoperfusion and ischaemic pathology beyond MCA territory after intraluminal filament occlusion in C57Bl/6J mice,” Brain Research, vol. 997, no. 1, pp. 15–23, 2004. View at Google Scholar · View at Scopus
  13. D. J. Cook and M. Tymianski, “Nonhuman primate models of stroke for translational neuroprotection research,” Neurotherapeutics, vol. 9, no. 2, pp. 371–379, 2012. View at Google Scholar
  14. S. Ankolekar, S. Rewell, D. W. Howells, and P. M. Bath, “The influence of stroke risk factors and comorbidities on assessment of stroke therapies in humans and animals,” International Journal of Stroke, vol. 7, no. 5, pp. 386–397, 2012. View at Google Scholar
  15. M. Wiszniewska, M. Niewada, and A. Czlonkowska, “Sex differences in risk factor distribution, severity, and outcome of ischemic stroke,” Acta Clinica Croatica, vol. 50, no. 1, pp. 21–28, 2011. View at Google Scholar
  16. M. Liu, S. Dziennis, P. D. Hurn, and N. J. Alkayed, “Mechanisms of gender-linked ischemic brain injury,” Restorative Neurology and Neuroscience, vol. 27, no. 3, pp. 163–179, 2009. View at Publisher · View at Google Scholar · View at Scopus
  17. V. L. Roger, A. S. Go, D. M. Lloyd-Jones et al., “Heart disease and stroke statistics—2011 update: a report from the American Heart Association,” Circulation, vol. 123, no. 4, pp. e18–e209, 2011. View at Google Scholar
  18. I. M. Macrae, “Preclinical stroke research—advantages and disadvantages of the most common rodent models of focal ischaemia,” British Journal of Pharmacology, vol. 164, no. 4, pp. 1062–1078, 2011. View at Google Scholar
  19. K. Guluma, “Clinical relevance in a translational rodent model of acute ischemic stroke: incorporating the biological variability of spontaneous recanalization,” in Translational Stroke Research, P. A. Lapchak and J. H. Zhang, Eds., vol. 3, chapter 26, pp. 525–540, Springer, 2012. View at Google Scholar
  20. K. A. Hossmann, “Cerebral ischemia: models, methods and outcomes,” Neuropharmacology, vol. 55, no. 3, pp. 257–270, 2008. View at Publisher · View at Google Scholar · View at Scopus
  21. K. A. Hossmann, “The two pathophysiologies of focal brain ischemia: implications for translational stroke research,” Journal of Cerebral Blood Flow and Metabolism, vol. 32, no. 7, pp. 1310–1316, 2012. View at Google Scholar
  22. S. T. Carmichael, “Rodent models of focal stroke: size, mechanism, and purpose,” NeuroRx, vol. 2, no. 3, pp. 396–409, 2005. View at Publisher · View at Google Scholar · View at Scopus
  23. K. P. Doyle, N. Fathali, M. R. Siddiqui, and M. S. Buckwalter, “Distal hypoxic stroke: a new mouse model of stroke with high throughput, low variability and a quantifiable functional deficit,” Journal of Neuroscience Methods, vol. 207, no. 1, pp. 31–40, 2012. View at Google Scholar
  24. S. Liu, G. Zhen, B. P. Meloni, K. Campbell, and H. R. Winn, “Rodent stroke model guidelines for preclinical stroke trials (1st Edition),” Journal of Experimental Stroke & Translational Medicine, vol. 2, no. 2, pp. 2–27, 2009. View at Google Scholar
  25. H. Sakai, H. Sheng, R. B. Yates, K. Ishida, R. D. Pearlstein, and D. S. Warner, “Isoflurane provides long-term protection against focal cerebral ischemia in the rat,” Anesthesiology, vol. 106, no. 1, pp. 92–99, 2007. View at Publisher · View at Google Scholar · View at Scopus
  26. L. C. Mei, J. Yang, S. Kem, L. Klaidman, T. Sugawara, and P. H. Chan, “Nicotinamide and ketamine reduce infarct volume and DNA fragmentation in rats after brain ischemia and reperfusion,” Neuroscience Letters, vol. 322, no. 3, pp. 137–140, 2002. View at Google Scholar · View at Scopus
  27. Y. L. Zhang, P. B. Zhang, S. D. Qiu, Y. Liu, Y. F. Tian, and Y. Wang, “Effects of ketamine-midazolam anesthesia on the expression of NMDA and AMPA receptor subunit in the peri-infarction of rat brain,” Chinese Medical Journal, vol. 119, no. 18, pp. 1555–1562, 2006. View at Google Scholar · View at Scopus
  28. M. Proescholdt, A. Heimann, and O. Kempski, “Neuroprotection of S(+) ketamine isomer in global forebrain ischemia,” Brain Research, vol. 904, no. 2, pp. 245–251, 2001. View at Publisher · View at Google Scholar · View at Scopus
  29. J. N. Stankowski and R. Gupta, “Therapeutic targets for neuroprotection in acute ischemic stroke: lost in translation?” Antioxidants and Redox Signaling, vol. 14, no. 10, pp. 1841–1851, 2011. View at Publisher · View at Google Scholar · View at Scopus
  30. R. J. Turner, G. C. Jickling, and F. R. Sharp, “Are underlying assumptions of current animal models of human stroke correct: from STAIRs to high hurdles?” Translational Stroke Research, vol. 2, no. 2, pp. 138–143, 2011. View at Publisher · View at Google Scholar · View at Scopus
  31. A. B. Singhal, E. H. Lo, T. Dalkara, and M. Moskowitz, “Ischemic stroke: basic pathophysiology and neuroprotective strategies,” in Acute Ischemic Stroke, R. G. Gonzalez et al., Ed., chapter 1, pp. 1–24, Springer, Berlin, Germany, 2011. View at Google Scholar
  32. B. A. Sutherland, J. Minnerup, J. S. Balami et al., “Neuroprotection for ischaemic stroke: translation from the bench to the bedside,” International Journal of Stroke, vol. 7, no. 5, pp. 407–418, 2012. View at Google Scholar
  33. B. S. D. Manawadu, J. Jarosz, and L. Kalra, “Abstract 56: thrombolysis in selected patients with wake up stroke is feasible with similar safety as thrombolysis in 0–4.5 hours,” Stroke, vol. 43, Article ID A56, 2012. View at Google Scholar
  34. H. V. Vesterinen, K. Egan, A. Deister, P. Schlattmann, M. R. MacLeod, and U. Dirnagl, “Systematic survey of the design, statistical analysis, and reporting of studies,” Journal of Cerebral Blood Flow and Metabolism, vol. 31, no. 4, pp. 1064–1072, 2011. View at Publisher · View at Google Scholar · View at Scopus
  35. F. Liu, D. P. Schafer, and L. D. McCullough, “TTC, Fluoro-Jade B and NeuN staining confirm evolving phases of infarction induced by middle cerebral artery occlusion,” Journal of Neuroscience Methods, vol. 179, no. 1, pp. 1–8, 2009. View at Publisher · View at Google Scholar · View at Scopus