Table of Contents Author Guidelines Submit a Manuscript
Stroke Research and Treatment
Volume 2014, Article ID 560491, 9 pages
http://dx.doi.org/10.1155/2014/560491
Research Article

Role of Matrix Metalloproteinase Activity in the Neurovascular Protective Effects of Angiotensin Antagonism

1Charlie Norwood VA Medical Center, Augusta, GA 30912, USA
2Program in Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia, HM 1212, 1120 15th Street, Augusta, GA 30912, USA
3Department of Biostatistics, Georgia Regents University, Augusta, GA 30912, USA
4Vision Discovery Institute, Georgia Regents University, Augusta, GA 30912, USA
5Department of Physiology, Georgia Regents University, Augusta, GA 30912, USA
6Department of Neurology, Georgia Regents University, Augusta, GA 30912, USA

Received 19 March 2014; Revised 23 June 2014; Accepted 7 July 2014; Published 24 July 2014

Academic Editor: Mohammad Moshahid Khan

Copyright © 2014 Tauheed Ishrat et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. V. L. Roger, A. S. Go, D. M. Lloyd-Jones et al., “Heart disease and stroke statistics—2012 update: a report from the American Heart Association,” Circulation, vol. 125, no. 1, pp. e2–e220, 2012. View at Publisher · View at Google Scholar · View at Scopus
  2. Y. Gürsoy-Özdemir, A. Can, and T. Dalkara, “Reperfusion-induced oxidative/nitrativie injury to neurovascular unit after focal cerebral ischemia,” Stroke, vol. 35, no. 6, pp. 1449–1453, 2004. View at Publisher · View at Google Scholar · View at Scopus
  3. J. E. Jung, G. S. Kim, H. Chen et al., “Reperfusion and neurovascular dysfunction in stroke: from basic mechanisms to potential strategies for neuroprotection,” Molecular Neurobiology, vol. 41, no. 2-3, pp. 172–179, 2010. View at Publisher · View at Google Scholar · View at Scopus
  4. T. Okamoto, T. Akaike, T. Nagano et al., “Activation of human neutrophil procollagenase by nitrogen dioxide and peroxynitrite: a novel mechanism for procollagenase activation involving nitric oxide,” Archives of Biochemistry and Biophysics, vol. 342, no. 2, pp. 261–274, 1997. View at Publisher · View at Google Scholar · View at Scopus
  5. T. Okamoto, T. Akaike, T. Sawa, Y. Miyamoto, A. van der Vliet, and H. Maeda, “Activation of matrix metalloproteinases by peroxynitrite-induced protein S-glutathiolation via disulfide S-oxide formation,” The Journal of Biological Chemistry, vol. 276, no. 31, pp. 29596–29602, 2001. View at Publisher · View at Google Scholar · View at Scopus
  6. S. C. Fagan, D. C. Hess, E. J. Hohnadel, D. M. Pollock, and A. Ergul, “Targets for vascular protection after acute ischemic stroke,” Stroke, vol. 35, no. 9, pp. 2220–2225, 2004. View at Publisher · View at Google Scholar · View at Scopus
  7. T. Sumii and E. H. Lo, “Involvement of matrix metalloproteinase in thrombolysis-associated hemorrhagic transformation after embolic focal ischemia in rats,” Stroke, vol. 33, no. 3, pp. 831–836, 2002. View at Publisher · View at Google Scholar · View at Scopus
  8. B. Q. Zhao, S. Wang, H. Y. Kim et al., “Role of matrix metalloproteinases in delayed cortical responses after stroke,” Nature Medicine, vol. 12, no. 4, pp. 441–445, 2006. View at Publisher · View at Google Scholar · View at Scopus
  9. Y. Suofu, J. Clark, J. Broderick et al., “Peroxynitrite decomposition catalyst prevents matrix metalloproteinase activation and neurovascular injury after prolonged cerebral ischemia in rats,” Journal of Neurochemistry, vol. 115, no. 5, pp. 1266–1276, 2010. View at Publisher · View at Google Scholar · View at Scopus
  10. M. Thiyagarajan, C. L. Kaul, and S. S. Sharma, “Neuroprotective efficacy and therapeutic time window of peroxynitrite decomposition catalysts in focal cerebral ischemia in rats,” British Journal of Pharmacology, vol. 142, no. 5, pp. 899–911, 2004. View at Publisher · View at Google Scholar · View at Scopus
  11. S. C. Fagan, A. Kozak, W. D. Hill et al., “Hypertension after experimental cerebral ischemia: candesartan provides neurovascular protection,” Journal of Hypertension, vol. 24, no. 3, pp. 535–539, 2006. View at Publisher · View at Google Scholar · View at Scopus
  12. W. Guan, P. R. Somanath, A. Koza et al., “Vascular protection by angiotensin receptor antagonism involves differential vegf expression in both hemispheres after experimental stroke,” PLoS ONE, vol. 6, no. 9, Article ID e24551, 2011. View at Publisher · View at Google Scholar · View at Scopus
  13. Y. Nishimura, T. Ito, and J. M. Saavedra, “Angiotensin II AT1 blockade normalizes cerebrovascular autoregulation and reduces cerebral ischemia in spontaneously hypertensive rats,” Stroke, vol. 31, no. 10, pp. 2478–2486, 2000. View at Publisher · View at Google Scholar · View at Scopus
  14. G. Reboldi, F. Angeli, C. Cavallini, G. Gentile, G. Mancia, and P. Verdecchia, “Comparison between angiotensin-converting enzyme inhibitors and angiotensin receptor blockers on the risk of myocardial infarction, stroke and death: a meta-analysis,” Journal of Hypertension, vol. 26, no. 7, pp. 1282–1289, 2008. View at Publisher · View at Google Scholar · View at Scopus
  15. H. F. Elewa, A. Kozak, M. H. Johnson, A. Ergul, and S. C. Fagan, “Blood pressure lowering after experimental cerebral ischemia provides neurovascular protection,” Journal of Hypertension, vol. 25, no. 4, pp. 855–859, 2007. View at Publisher · View at Google Scholar · View at Scopus
  16. W. Guan, A. Kozak, A. B. El-Remessy, M. H. Johnson, B. A. Pillai, and S. C. Fagan, “Acute treatment with candesartan reduces early injury after permanent middle cerebral artery occlusion,” Translational Stroke Research, vol. 2, no. 2, pp. 179–185, 2011. View at Publisher · View at Google Scholar · View at Scopus
  17. A. Kozak, A. Ergul, A. B. El-Remessy et al., “Candesartan augments ischemia-induced proangiogenic state and results in sustained improvement after stroke,” Stroke, vol. 40, no. 5, pp. 1870–1876, 2009. View at Publisher · View at Google Scholar · View at Scopus
  18. H. Yamakawa, M. Jezova, H. Ando, and J. M. Saavedra, “Normalization of endothelial and inducible nitric oxide synthase expression in brain microvessels of spontaneously hypertensive rats by angiotensin II AT1 receptor inhibition,” Journal of Cerebral Blood Flow and Metabolism, vol. 23, no. 3, pp. 371–380, 2003. View at Google Scholar · View at Scopus
  19. M. Hamai, M. Iwai, A. Ide et al., “Comparison of inhibitory action of candesartan and enalapril on brain ischemia through inhibition of oxidative stress,” Neuropharmacology, vol. 51, no. 4, pp. 822–828, 2006. View at Publisher · View at Google Scholar · View at Scopus
  20. S. Soliman, T. Ishrat, A. Pillai et al., “Candesartan induces a prolonged proangiogenic effect and augments endothelium-mediated neuroprotection after oxygen and glucose deprivation: role of vascular endothelial growth factors A and B,” Journal of Pharmacology and Experimental Therapeutics, vol. 349, no. 3, pp. 444–457, 2014. View at Publisher · View at Google Scholar
  21. E. C. Sandset, P. M. W. Bath, G. Boysen et al., “The angiotensin-receptor blocker candesartan for treatment of acute stroke (SCAST): a randomised, placebo-controlled, double-blind trial,” The Lancet, vol. 377, no. 9767, pp. 741–750, 2011. View at Publisher · View at Google Scholar · View at Scopus
  22. T. Ishrat, B. Pillai, A. Ergul, S. Hafez, and S. C. Fagan, “Candesartan reduces the hemorrhage associated with delayed tissue plasminogen activator treatment in rat embolic stroke,” Neurochemical Research, vol. 38, no. 12, pp. 2668–2677, 2013. View at Publisher · View at Google Scholar
  23. Y. Murata, A. Rosell, R. H. Scannevin, K. J. Rhodes, X. Wang, and E. H. Lo, “Extension of the thrombolytic time window with minocycline in experimental stroke,” Stroke, vol. 39, no. 12, pp. 3372–3377, 2008. View at Publisher · View at Google Scholar · View at Scopus
  24. L. Zhang, M. Chopp, L. Jia, Y. Cui, M. Lu, and Z. G. Zhang, “Atorvastatin extends the therapeutic window for tPA to 6 h after the onset of embolic stroke in rats,” Journal of Cerebral Blood Flow and Metabolism, vol. 29, no. 11, pp. 1816–1824, 2009. View at Publisher · View at Google Scholar · View at Scopus
  25. J. Montaner, J. Alvarez-Sabín, C. Molina et al., “Matrix metalloproteinase expression after human cardioembolic stroke: temporal profile and relation to neurological impairment,” Stroke, vol. 32, no. 8, pp. 1759–1766, 2001. View at Publisher · View at Google Scholar · View at Scopus
  26. A. Rosell, A. Ortega-Aznar, J. Alvarez-Sabín et al., “Increased brain expression of matrix metalloproteinase-9 after ischemic and hemorrhagic human stroke,” Stroke, vol. 37, no. 6, pp. 1399–1406, 2006. View at Publisher · View at Google Scholar · View at Scopus
  27. E. Z. Longa, P. R. Weinstein, S. Carlson, and R. Cummins, “Reversible middle cerebral artery occlusion without craniectomy in rats,” Stroke, vol. 20, no. 1, pp. 84–91, 1989. View at Publisher · View at Google Scholar · View at Scopus
  28. J. B. Bederson, L. H. Pitts, and M. Tsuji, “Rat middle cerebral artery occlusion: evaluation of the model and development of a neurologic examination,” Stroke, vol. 17, no. 3, pp. 472–476, 1986. View at Publisher · View at Google Scholar · View at Scopus
  29. S. Takizawa, N. Fukuyama, H. Hirabayashi, H. Nakazawa, and Y. Shinohara, “Dynamics of nitrotyrosine formation and decay in rat brain during focal ischemia-reperfusion,” Journal of Cerebral Blood Flow and Metabolism, vol. 19, no. 6, pp. 667–672, 1999. View at Google Scholar · View at Scopus
  30. A. I. Kelly-Cobbs, R. Prakash, W. Li et al., “Targets of vascular protection in acute ischemic stroke differ in type 2 diabetes,” American Journal of Physiology - Heart and Circulatory Physiology, vol. 304, no. 6, pp. H806–H815, 2013. View at Publisher · View at Google Scholar · View at Scopus
  31. W. Kozak, A. Kozak, M. H. Johnson, H. F. Elewa, and S. C. Fagan, “Vascular protection with candesartan after experimental acute stroke in hypertensive rats: a dose-response study,” Journal of Pharmacology and Experimental Therapeutics, vol. 326, no. 3, pp. 773–782, 2008. View at Publisher · View at Google Scholar · View at Scopus
  32. U. Dirnagl, U. Lindauer, A. Them et al., “Global cerebral ischemia in the rat: online monitoring of oxygen free radical production using chemiluminescence in vivo,” Journal of Cerebral Blood Flow and Metabolism, vol. 15, no. 6, pp. 929–940, 1995. View at Publisher · View at Google Scholar · View at Scopus
  33. Y. Yang, L. Ke-Zhou, G. M. Ning, M. L. Wang, and X. X. Zheng, “Dynamics of nitric oxide and peroxynitrite during global brain ischemia/reperfusion in rat hippocampus: NO-sensor measurement and modeling study,” Neurochemical Research, vol. 33, no. 1, pp. 73–80, 2008. View at Publisher · View at Google Scholar · View at Scopus
  34. Y. Gasche, J. Copin, T. Sugawara, M. Fujimura, and P. H. Chan, “Matrix metalloproteinase inhibition prevents oxidative stress-associated blood-brain barrier disruption after transient focal cerebral ischemia,” Journal of Cerebral Blood Flow and Metabolism, vol. 21, no. 12, pp. 1393–1400, 2001. View at Google Scholar · View at Scopus
  35. M. J. Eliasson, Z. Huang, R. J. Ferrante et al., “Neuronal nitric oxide synthase activation and peroxynitrite formation in ischemic stroke linked to neural damage,” The Journal of Neuroscience, vol. 19, no. 14, pp. 5910–5918, 1999. View at Google Scholar · View at Scopus
  36. Y. Gürsoy-Özdemir, H. Bolay, O. Saribaş, and T. Dalkara, “Role of endothelial nitric oxide generation and peroxynitrite formation in reperfusion injury after focal cerebral ischemia,” Stroke, vol. 31, no. 8, pp. 1974–1981, 2000. View at Publisher · View at Google Scholar · View at Scopus
  37. S. S. Marla, J. Lee, and J. T. Groves, “Peroxynitrite rapidly permeates phospholipid membranes,” Proceedings of the National Academy of Sciences of the United States of America, vol. 94, no. 26, pp. 14243–14248, 1997. View at Publisher · View at Google Scholar · View at Scopus
  38. G. T. Gobbel, T. Y. Chan, and P. H. Chan, “Nitric oxide- and superoxide-mediated toxicity in cerebral endothelial cells,” Journal of Pharmacology and Experimental Therapeutics, vol. 282, no. 3, pp. 1600–1607, 1997. View at Google Scholar · View at Scopus
  39. S. Shimizu, R. P. Simon, and S. H. Graham, “Dimethylsulfoxide (DMSO) treatment reduces infarction volume after permanent focal cerebral ischemia in rats,” Neuroscience Letters, vol. 239, no. 2-3, pp. 125–127, 1997. View at Publisher · View at Google Scholar · View at Scopus
  40. S. Nagel, J. Genius, S. Heiland, S. Horstmann, H. Gardner, and S. Wagner, “Diphenyleneiodonium and dimethylsulfoxide for treatment of reperfusion injury in cerebral ischemia of the rat,” Brain Research, vol. 1132, no. 1, pp. 210–217, 2007. View at Publisher · View at Google Scholar · View at Scopus
  41. A. Kleindienst, J. G. Dunbar, R. Glisson, K. Okuno, and A. Marmarou, “Effect of dimethyl sulfoxide on blood-brain barrier integrity following middle cerebral artery occlusion in the rat,” Acta Neurochirurgica, Supplementum, no. 96, pp. 258–262, 2006. View at Publisher · View at Google Scholar · View at Scopus
  42. A. S. Awad, “Effect of combined treatment with curcumin and candesartan on ischemic brain damage in mice,” Journal of Stroke and Cerebrovascular Diseases, vol. 20, no. 6, pp. 541–548, 2011. View at Publisher · View at Google Scholar · View at Scopus
  43. S. Tota, R. Goel, S. D. Pachauri et al., “Effect of angiotensin II on spatial memory, cerebral blood flow, cholinergic neurotransmission, and brain derived neurotrophic factor in rats,” Psychopharmacology, vol. 226, no. 2, pp. 357–369, 2013. View at Publisher · View at Google Scholar · View at Scopus
  44. A. Alhusban, A. Kozak, A. Ergul, and S. C. Fagan, “AT1 receptor antagonism is proangiogenic in the brain: BDNF a novel mediators,” Journal of Pharmacology and Experimental Therapeutics, vol. 344, no. 2, pp. 348–359, 2013. View at Publisher · View at Google Scholar · View at Scopus