Table of Contents Author Guidelines Submit a Manuscript
Stroke Research and Treatment
Volume 2014 (2014), Article ID 591013, 21 pages
http://dx.doi.org/10.1155/2014/591013
Review Article

Walking Adaptability after a Stroke and Its Assessment in Clinical Settings

1Department of Clinical and Applied Movement Sciences, University of North Florida, 1 UNF Drive, Jacksonville, FL 32224, USA
2Brain Rehabilitation Research Center (151A), Malcom Randall VA Medical Center, 1601 SW Archer Roadd, Gainesville, FL 32608, USA
3Department of Aging and Geriatric Research, University of Florida, Gainesville, FL 32603, USA
4Department of Physical Therapy, University of Florida, P.O. Box 100154, Gainesville, FL 32610-0154, USA
5Brooks Rehabilitation, Jacksonville, FL 32216, USA

Received 15 April 2014; Accepted 6 June 2014; Published 28 August 2014

Academic Editor: Steve Kautz

Copyright © 2014 Chitralakshmi K. Balasubramanian et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. CDC, “Stroke Facts,” 2014, http://www.cdc.gov/stroke/facts.htm.
  2. A. S. Go, D. Mozaffarian, V. L. Roger et al., “Heart disease and stroke statistics—2013 update: a Report from the American Heart Association,” Circulation, vol. 127, no. 1, pp. e6–e245, 2013. View at Publisher · View at Google Scholar · View at Scopus
  3. H. P. Von Schroeder, R. D. Coutts, P. D. Lyden, E. Billings Jr., and V. L. Nickel, “Gait parameters following stroke: a practical assessment,” Journal of Rehabilitation Research and Development, vol. 32, no. 1, pp. 25–31, 1995. View at Google Scholar · View at Scopus
  4. R. G. Burdett, D. Borello-France, C. Blatchly, and C. Potter, “Gait comparison of subjects with hemiplegia walking unbraced, with ankle-foot orthosis, and with Air-Stirrup brace,” Physical Therapy, vol. 68, no. 8, pp. 1197–1203, 1988. View at Google Scholar · View at Scopus
  5. S. J. Olney and C. Richards, “Hemiparetic gait following stroke. Part I: characteristics,” Gait and Posture, vol. 4, no. 2, pp. 136–148, 1996. View at Publisher · View at Google Scholar · View at Scopus
  6. D. T. Wade and R. L. Hewer, “Functional abilities after stroke: measurement, natural history and prognosis,” Journal of Neurology Neurosurgery and Psychiatry, vol. 50, no. 2, pp. 177–182, 1987. View at Google Scholar · View at Scopus
  7. L. Jørgensen, T. Engstad, and B. K. Jacobsen, “Higher incidence of falls in long-term stroke survivors than in population controls: depressive symptoms predict falls after stroke,” Stroke, vol. 33, no. 2, pp. 542–547, 2002. View at Publisher · View at Google Scholar · View at Scopus
  8. K. Hill, P. Ellis, J. Bernhardt, P. Maggs, and S. Hull, “Balance and mobility outcomes for stroke patients: a comprehensive audit,” Australian Journal of Physiotherapy, vol. 43, no. 3, pp. 173–180, 1997. View at Google Scholar · View at Scopus
  9. S. E. Lord, K. McPherson, H. K. McNaughton, L. Rochester, and M. Weatherall, “Community ambulation after stroke: how important and obtainable is it and what measures appear predictive?” Archives of Physical Medicine and Rehabilitation, vol. 85, no. 2, pp. 234–239, 2004. View at Publisher · View at Google Scholar · View at Scopus
  10. S. Lord, K. M. McPherson, H. K. McNaughton, L. Rochester, and M. Weatherall, “How feasible is the attainment of community ambulation after stroke? A pilot randomized controlled trial to evaluate community-based physiotherapy in subacute stroke,” Clinical Rehabilitation, vol. 22, no. 3, pp. 215–225, 2008. View at Publisher · View at Google Scholar · View at Scopus
  11. H. Forssberg, “Spinal locomotor functions and descending control,” in Brainstem Control of Spinal Mechanisms, B. Sjolund and R. Bjorklund, Eds., pp. 253–271, Elsevier Biomedical, Amsterdam, The Netherlands, 1982. View at Google Scholar
  12. H. Barbeau, J. Fung, A. Leroux, and M. Ladouceur, “A review of the adaptability and recovery of locomotion after spinal cord injury,” Progress in Brain Research, vol. 137, pp. 9–25, 2002. View at Publisher · View at Google Scholar · View at Scopus
  13. H. Barbeau, “Locomotor training in neurorehabilitation: emerging rehabilitation concepts,” Neurorehabilitation and Neural Repair, vol. 17, no. 1, pp. 3–11, 2003. View at Publisher · View at Google Scholar · View at Scopus
  14. S. Grillner and P. Wallen, “Central pattern generators for locomotion, with special reference to vertebrates,” Annual Review of Neuroscience, vol. 8, pp. 233–261, 1985. View at Publisher · View at Google Scholar · View at Scopus
  15. A. E. Patla and A. Shumway-Cook, “Dimensions of mobility: defining the complexity and difficulty associated with community mobility,” Journal of Aging and Physical Activity, vol. 7, no. 1, pp. 7–19, 1999. View at Google Scholar · View at Scopus
  16. J. Smith, A. Forster, and J. Young, “Use of the “STRATIFY” falls risk assessment in patients recovering from acute stroke,” Age and Ageing, vol. 35, no. 2, pp. 138–143, 2006. View at Publisher · View at Google Scholar · View at Scopus
  17. A. Forster and J. Young, “Incidence and consequences of falls due to stroke: a systematic inquiry,” British Medical Journal, vol. 311, no. 6997, pp. 83–86, 1995. View at Publisher · View at Google Scholar · View at Scopus
  18. J. S. Yates, S. M. Lai, P. W. Duncan, and S. Studenski, “Falls in community-dwelling stroke survivors: an accumulated impairments model,” Journal of Rehabilitation Research and Development, vol. 39, no. 3, pp. 385–394, 2002. View at Google Scholar · View at Scopus
  19. S. E. Lamb, L. Ferrucci, S. Volapto, L. P. Fried, and J. M. Guralnik, “Risk factors for falling in home-dwelling older women with stroke: the women's health and aging study,” Stroke, vol. 34, no. 2, pp. 494–501, 2003. View at Publisher · View at Google Scholar · View at Scopus
  20. D. Hyndman, A. Ashburn, and E. Stack, “Fall events among people with stroke living in the community: circumstances of falls and characteristics of fallers,” Archives of Physical Medicine and Rehabilitation, vol. 83, no. 2, pp. 165–170, 2002. View at Publisher · View at Google Scholar · View at Scopus
  21. V. Weerdesteyn, M. De Niet, H. J. R. Van Duijnhoven, and A. C. H. Geurts, “Falls in individuals with stroke,” Journal of Rehabilitation Research and Development, vol. 45, no. 8, pp. 1195–1214, 2008. View at Publisher · View at Google Scholar · View at Scopus
  22. W. P. Berg, H. M. Alessio, E. M. Mills, and C. Tong, “Circumstances and consequences of falls in independent community-dwelling older adults,” Age and Ageing, vol. 26, no. 4, pp. 261–268, 1997. View at Publisher · View at Google Scholar · View at Scopus
  23. C. M. Said, P. A. Goldie, E. Culham, W. A. Sparrow, A. E. Patla, and M. E. Morris, “Control of lead and trail limbs during obstacle crossing following stroke,” Physical Therapy, vol. 85, no. 5, pp. 413–427, 2005. View at Google Scholar · View at Scopus
  24. J. M. Blennerhassett, W. Dite, E. R. Ramage, and M. E. Richmond, “Changes in balance and walking from stroke rehabilitation to the community: a follow-up observational study,” Archives of Physical Medicine and Rehabilitation, vol. 93, no. 10, pp. 1782–1787, 2012. View at Publisher · View at Google Scholar · View at Scopus
  25. F. Soyuer and A. Oztürk, “The effect of spasticity, sense and walking aids in falls of people after chronic stroke,” Disability and Rehabilitation, vol. 29, no. 9, pp. 679–687, 2007. View at Google Scholar
  26. J. E. Harris, J. J. Eng, D. S. Marigold, C. D. Tokuno, and C. L. Louis, “Relationship of balance and mobility to fall incidence in people with chronic stroke,” Physical Therapy, vol. 85, no. 2, pp. 150–158, 2005. View at Google Scholar · View at Scopus
  27. P. W. Duncan, “Stroke disability,” Physical Therapy, vol. 74, no. 5, pp. 399–407, 1994. View at Google Scholar · View at Scopus
  28. S. Barak and P. W. Duncan, “Issues in selecting outcome measures to assess functional recovery after stroke,” NeuroRx, vol. 3, no. 4, pp. 505–524, 2006. View at Publisher · View at Google Scholar · View at Scopus
  29. S. Mudge and N. S. Stott, “Outcome measures to assess walking ability following stroke: a systematic review of the literature,” Physiotherapy, vol. 93, no. 3, pp. 189–200, 2007. View at Publisher · View at Google Scholar · View at Scopus
  30. P. W. Duncan, “Outcome measures in stroke rehabilitation,” in Handbook of Clinical Neurology, vol. 110, pp. 105–111, 2013. View at Google Scholar
  31. L. Z. Rubenstein, K. R. Josephson, P. R. Trueblood, K. Yeung, J. O. Harker, and A. S. Robbins, “The reliability and validity of an obstacle course as a measure of gait and balance in older adults,” Aging Clinical and Experimental Research, vol. 9, no. 1-2, pp. 127–135, 1997. View at Publisher · View at Google Scholar · View at Scopus
  32. K. M. Means, “The obstacle course: a tool for the assessment of functional balance and mobility in the elderly,” Journal of Rehabilitation Research and Development, vol. 33, no. 4, pp. 413–429, 1996. View at Google Scholar · View at Scopus
  33. S. Grillner, “Control of locomotion in bipeds, tetrapods, and fish,” in Handbook of Physiology, J. Brookhart and V. Mountcastle, Eds., pp. 1179–1236, American Physiological Society, 1981. View at Google Scholar
  34. S. Rossignol, “Locomotion and its recovery after spinal injury,” Current Opinion in Neurobiology, vol. 10, no. 6, pp. 708–716, 2000. View at Publisher · View at Google Scholar · View at Scopus
  35. K. Matsuyama, F. Mori, K. Nakajima, T. Drew, M. Aoki, and S. Mori, “Locomotor role of the corticoreticular-reticulospinal-spinal interneuronal system,” Progress in Brain Research, vol. 143, pp. 239–249, 2004. View at Publisher · View at Google Scholar · View at Scopus
  36. S. Grillner, P. Wallén, K. Saitoh, A. Kozlov, and B. Robertson, “Neural bases of goal-directed locomotion in vertebrates—an overview,” Brain Research Reviews, vol. 57, no. 1, pp. 2–12, 2008. View at Publisher · View at Google Scholar · View at Scopus
  37. V. Dietz, “Interaction between central programs and afferent input in the control of posture and locomotion,” Journal of Biomechanics, vol. 29, no. 7, pp. 841–844, 1996. View at Publisher · View at Google Scholar · View at Scopus
  38. M. Pijnappels, B. M. H. van Wezel, G. Colombo, V. Dietz, and J. Duysens, “Cortical facilitation of cutaneous reflexes in leg muscles during human gait,” Brain Research, vol. 787, no. 1, pp. 149–153, 1998. View at Publisher · View at Google Scholar · View at Scopus
  39. J. T. Gwin, K. Gramann, S. Makeig, and D. P. Ferris, “Electrocortical activity is coupled to gait cycle phase during treadmill walking,” NeuroImage, vol. 54, no. 2, pp. 1289–1296, 2011. View at Publisher · View at Google Scholar · View at Scopus
  40. A. Presacco, R. Goodman, L. Forrester, and J. L. Contreras-Vidal, “Neural decoding of treadmill walking from noninvasive electroencephalographic signals,” Journal of Neurophysiology, vol. 106, no. 4, pp. 1875–1887, 2011. View at Publisher · View at Google Scholar · View at Scopus
  41. N. T. Petersen, J. E. Butler, V. Marchand-Pauvert et al., “Suppression of EMG activity by transcranial magnetic stimulation in human subjects during walking,” The Journal of Physiology, vol. 537, part 2, pp. 651–656, 2001. View at Publisher · View at Google Scholar · View at Scopus
  42. J. B. Nielsen, “How we walk: central control of muscle activity during human walking,” Neuroscientist, vol. 9, no. 3, pp. 195–204, 2003. View at Publisher · View at Google Scholar · View at Scopus
  43. D. M. Armstrong, “The supraspinal control of mammalian locomotion,” Journal of Physiology, vol. 405, pp. 1–37, 1988. View at Google Scholar · View at Scopus
  44. T. Drew, W. Jiang, B. Kably, and S. Lavoie, “Role of the motor cortex in the control of visually triggered gait modifications,” Canadian Journal of Physiology and Pharmacology, vol. 74, no. 4, pp. 426–442, 1996. View at Google Scholar · View at Scopus
  45. T. Drew, S. Prentice, and B. Schepens, “Cortical and brainstem control of locomotion,” Progress in Brain Research, vol. 143, pp. 251–261, 2004. View at Publisher · View at Google Scholar · View at Scopus
  46. A. P. Georgopoulos and S. Grillner, “Visuomotor coordination in reaching and locomotion,” Science, vol. 245, no. 4923, pp. 1209–1210, 1989. View at Publisher · View at Google Scholar · View at Scopus
  47. D. Barthélemy, M. J. Grey, J. B. Nielsen, and L. Bouyer, “Involvement of the corticospinal tract in the control of human gait,” Progress in Brain Research, vol. 192, pp. 181–197, 2011. View at Publisher · View at Google Scholar · View at Scopus
  48. E. G. T. Liddell and C. G. Phillips, “Pyramidal section in the cat,” Brain, vol. 67, no. 1, pp. 1–9, 1944. View at Publisher · View at Google Scholar · View at Scopus
  49. R. J. Adkins, M. R. Cegnar, and D. D. Rafuse, “Differential effects of lesions of the anterior and posterior sigmoid gyri in cats,” Brain Research, vol. 30, no. 2, pp. 411–414, 1971. View at Google Scholar · View at Scopus
  50. T. Drew, “Motor cortical cell discharge during voluntary gait modification,” Brain Research, vol. 457, no. 1, pp. 181–187, 1988. View at Google Scholar · View at Scopus
  51. I. N. Beloozerova, B. J. Farrell, M. G. Sirota, and B. I. Prilutsky, “Differences in movement mechanics, electromyographic, and motor cortex activity between accurate and nonaccurate stepping,” Journal of Neurophysiology, vol. 103, no. 4, pp. 2285–2300, 2010. View at Publisher · View at Google Scholar · View at Scopus
  52. A. Amos, D. M. Armstrong, and D. E. Marple-Horvat, “Changes in the discharge patterns of motor cortical neurones associated with volitional changes in stepping in the cat,” Neuroscience Letters, vol. 109, no. 1-2, pp. 107–112, 1990. View at Publisher · View at Google Scholar · View at Scopus
  53. M. Bonnard, M. Camus, T. Coyle, and J. Pailhous, “Task-induced modulation of motor evoked potentials in upper-leg muscles during human gait: a TMS study,” European Journal of Neuroscience, vol. 16, no. 11, pp. 2225–2230, 2002. View at Publisher · View at Google Scholar · View at Scopus
  54. M. Schubert, A. Curt, G. Colombo, W. Berger, and V. Dietz, “Voluntary control of human gait: conditioning of magnetically evoked motor responses in a precision stepping task,” Experimental Brain Research, vol. 126, no. 4, pp. 583–588, 1999. View at Publisher · View at Google Scholar · View at Scopus
  55. H. Houdijk, M. W. van Ooijen, J. J. Kraal et al., “Assessing gait adaptability in people with a unilateral amputation on an instrumented treadmill with a projected visual context,” Physical Therapy, vol. 92, no. 11, pp. 1452–1460, 2012. View at Publisher · View at Google Scholar · View at Scopus
  56. C. M. Said, P. A. Goldie, A. E. Patla, W. A. Sparrow, and K. E. Martin, “Obstacle crossing in subjects with stroke,” Archives of Physical Medicine and Rehabilitation, vol. 80, no. 9, pp. 1054–1059, 1999. View at Publisher · View at Google Scholar · View at Scopus
  57. C. M. Said, P. A. Goldie, A. E. Patla, E. Culham, W. A. Sparrow, and M. E. Morris, “Balance during obstacle crossing following stroke,” Gait and Posture, vol. 27, no. 1, pp. 23–30, 2008. View at Publisher · View at Google Scholar · View at Scopus
  58. A. R. Den Otter, A. C. H. Geurts, M. De Haart, T. Mulder, and J. Duysens, “Step characteristics during obstacle avoidance in hemiplegic stroke,” Experimental Brain Research, vol. 161, no. 2, pp. 180–192, 2005. View at Publisher · View at Google Scholar · View at Scopus
  59. K. Smulders, R. van Swigchem, B. J. M. de Swart, A. C. H. Geurts, and V. Weerdesteyn, “Community-dwelling people with chronic stroke need disproportionate attention while walking and negotiating obstacles,” Gait & Posture, vol. 36, no. 1, pp. 127–132, 2012. View at Publisher · View at Google Scholar · View at Scopus
  60. J. H. Nonnekes, P. Talelli, M. De Niet, R. F. Reynolds, V. Weerdesteyn, and B. L. Day, “Deficits underlying impaired visually triggered step adjustments in mildly affected stroke patients,” Neurorehabilitation and Neural Repair, vol. 24, no. 4, pp. 393–400, 2010. View at Publisher · View at Google Scholar · View at Scopus
  61. K. Takatori, Y. Okada, K. Shomoto, K. Ikuno, K. Nagino, and K. Tokuhisa, “Effect of a cognitive task during obstacle crossing in hemiparetic stroke patients,” Physiotherapy Theory and Practice, vol. 28, no. 4, pp. 292–298, 2012. View at Publisher · View at Google Scholar · View at Scopus
  62. D. L. Jaffe, D. A. Brown, C. D. Pierson-Carey, E. L. Buckley, and H. L. Lew, “Stepping over obstacles to improve walking in individuals with poststroke hemiplegia,” Journal of Rehabilitation Research and Development, vol. 41, no. 3A, pp. 283–292, 2004. View at Publisher · View at Google Scholar · View at Scopus
  63. M. J. MacLellan, C. L. Richards, J. Fung, and B. J. McFadyen, “Use of segmental coordination analysis of nonparetic and paretic limbs during obstacle clearance in community-dwelling persons after stroke,” PM and R, vol. 5, no. 5, pp. 381–391, 2013. View at Publisher · View at Google Scholar · View at Scopus
  64. R. van Swigchem, H. J. R. van Duijnhoven, J. den Boer, A. C. Geurts, and V. Weerdesteyn, “Deficits in motor response to avoid sudden obstacles during gait in functional walkers poststroke,” Neurorehabilitation and Neural Repair, vol. 27, no. 3, pp. 230–239, 2013. View at Publisher · View at Google Scholar · View at Scopus
  65. G. Torres-Oviedo, E. Vasudevan, L. Malone, and A. J. Bastian, “Locomotor adaptation,” Progress in Brain Research, vol. 191, pp. 65–74, 2011. View at Publisher · View at Google Scholar · View at Scopus
  66. D. S. Reisman, H. J. Block, and A. J. Bastian, “Interlimb coordination during locomotion: what can be adapted and stored?” Journal of Neurophysiology, vol. 94, no. 4, pp. 2403–2415, 2005. View at Publisher · View at Google Scholar · View at Scopus
  67. E. V. L. Vasudevan and A. J. Bastian, “Split-belt treadmill adaptation shows different functional networks for fast and slow human walking,” Journal of Neurophysiology, vol. 103, no. 1, pp. 183–191, 2010. View at Publisher · View at Google Scholar · View at Scopus
  68. A. L. Behrman, M. G. Bowden, and P. M. Nair, “Neuroplasticity after spinal cord injury and training: an emerging paradigm shift in rehabilitation and walking recovery,” Physical Therapy, vol. 86, no. 10, pp. 1406–1425, 2006. View at Publisher · View at Google Scholar · View at Scopus
  69. A. Heeren, M. W. van Ooijen, A. C. H. Geurts et al., “Step by step: a proof of concept study of C-Mill gait adaptability training in the chronic phase after stroke,” Journal of Rehabilitation Medicine, vol. 45, no. 7, pp. 616–622, 2013. View at Publisher · View at Google Scholar · View at Scopus
  70. A. Shumway-Cook, A. E. Patla, A. Stewart, L. Ferrucci, M. A. Ciol, and J. M. Guralnik, “Environmental demands associated with community mobility in older adults with and without mobility disabilities,” Physical Therapy, vol. 82, no. 7, pp. 670–681, 2002. View at Google Scholar · View at Scopus
  71. J. H. Lin, M. J. Hsu, H. W. Hsu, H. C. Wu, and C. L. Hsieh, “Psychometric comparisons of 3 functional ambulation measures for patients with stroke,” Stroke, vol. 41, no. 9, pp. 2021–2025, 2010. View at Publisher · View at Google Scholar · View at Scopus
  72. J. Jonsdottir and D. Cattaneo, “Reliability and validity of the dynamic gait index in persons with chronic stroke,” Archives of Physical Medicine and Rehabilitation, vol. 88, no. 11, pp. 1410–1415, 2007. View at Publisher · View at Google Scholar · View at Scopus
  73. S. Romero, M. D. Bishop, C. A. Velozo, and K. Light, “Minimum detectable change of the Berg Balance Scale and Dynamic Gait Index in older persons at risk for falling,” Journal of Geriatric Physical Therapy, vol. 34, no. 3, pp. 131–137, 2011. View at Publisher · View at Google Scholar · View at Scopus
  74. A. Shumway-Cook, M. Baldwin, N. L. Polissar, and W. Gruber, “Predicting the probability for falls in community-dwelling older adults,” Physical Therapy, vol. 77, no. 8, pp. 812–819, 1997. View at Google Scholar · View at Scopus
  75. L. R. Jønsson, M. T. Kristensen, S. Tibaek, C. W. Andersen, and C. Juhl, “Intra- and interrater reliability and agreement of the Danish version of the Dynamic Gait Index in older people with balance impairments,” Archives of Physical Medicine and Rehabilitation, vol. 92, no. 10, pp. 1630–1635, 2011. View at Publisher · View at Google Scholar · View at Scopus
  76. B. D. Cakit, M. Saracoglu, H. Genc, H. R. Erdem, and L. Inan, “The effects of incremental speed-dependent treadmill training on postural instability and fear of falling in Parkinson's disease,” Clinical Rehabilitation, vol. 21, no. 8, pp. 698–705, 2007. View at Publisher · View at Google Scholar · View at Scopus
  77. C. D. Hall and S. J. Herdman, “Reliability of clinical measures used to assess patients with peripheral vestibular disorders,” Journal of Neurologic Physical Therapy, vol. 30, no. 2, pp. 74–81, 2006. View at Publisher · View at Google Scholar · View at Scopus
  78. S. L. Whitney, M. T. Hudak, and G. F. Marchetti, “The dynamic gait index relates to self-reported fall history in individuals with vestibular dysfunction,” Journal of Vestibular Research, vol. 10, no. 2, pp. 99–105, 2000. View at Google Scholar · View at Scopus
  79. G. F. Marchetti, C.-C. Lin, A. Alghadir, and S. L. Whitney, “Responsiveness and minimal detectable change of the dynamic gait index and functional gait index in persons with balance and vestibular disorders,” Journal of Neurologic Physical Therapy, vol. 38, no. 2, pp. 119–124, 2014. View at Google Scholar
  80. H. Thieme, C. Ritschel, and C. Zange, “Reliability and validity of the functional gait assessment (German version) in subacute stroke patients,” Archives of Physical Medicine and Rehabilitation, vol. 90, no. 9, pp. 1565–1570, 2009. View at Publisher · View at Google Scholar · View at Scopus
  81. M. L. Walker, A. G. Austin, G. M. Banke et al., “Reference group data for the functional gait assessment,” Physical Therapy, vol. 87, no. 11, pp. 1468–1477, 2007. View at Publisher · View at Google Scholar · View at Scopus
  82. A. L. Leddy, B. E. Crowner, and G. M. Earhart, “Functional gait assessment and balance evaluation system test: reliability, validity, sensitivity, and specificity for identifying individuals with parkinson disease who fall,” Physical Therapy, vol. 91, no. 1, pp. 102–113, 2011. View at Publisher · View at Google Scholar · View at Scopus
  83. D. M. Wrisley and N. A. Kumar, “Functional gait assessment: concurrent, discriminative, and predictive validity in community-dwelling older adults,” Physical Therapy, vol. 90, no. 5, pp. 761–773, 2010. View at Publisher · View at Google Scholar · View at Scopus
  84. T. Ellis, J. T. Cavanaugh, G. M. Earhart, M. P. Ford, K. B. Foreman, and L. E. Dibble, “Which measures of physical function and motor impairment best predict quality of life in Parkinson's disease?” Parkinsonism and Related Disorders, vol. 17, no. 9, pp. 693–697, 2011. View at Publisher · View at Google Scholar · View at Scopus
  85. D. M. Wrisley, G. F. Marchetti, D. K. Kuharsky, and S. L. Whitney, “Reliability, internal consistency, and validity of data obtained with the functional gait assessment,” Physical Therapy, vol. 84, no. 10, pp. 906–918, 2004. View at Google Scholar · View at Scopus
  86. L. J. Liaw, C. L. Hsieh, S. K. Lo, S. Lee, M. H. Huang, and J. H. Lin, “Psychometric properties of the modified Emory Functional Ambulation Profile in stroke patients,” Clinical Rehabilitation, vol. 20, no. 5, pp. 429–437, 2006. View at Publisher · View at Google Scholar · View at Scopus
  87. H. R. Baer and S. L. Wolf, “Modified Emory Functional Ambulation Profile: an outcome measure for the rehabilitation of poststroke gait dysfunction,” Stroke, vol. 32, no. 4, pp. 973–979, 2001. View at Publisher · View at Google Scholar · View at Scopus
  88. K. E. Musselman and J. F. Yang, “Spinal Cord Injury Functional Ambulation Profile: a preliminary look at responsiveness,” Physical Therapy, vol. 94, no. 2, pp. 240–250, 2014. View at Publisher · View at Google Scholar
  89. K. Musselman, K. Brunton, T. Lam, and J. Yang, “Spinal cord injury functional ambulation profile: a new measure of walking ability,” Neurorehabilitation and Neural Repair, vol. 25, no. 3, pp. 285–293, 2011. View at Publisher · View at Google Scholar · View at Scopus
  90. G. Williams, V. Robertson, K. Greenwood, P. Goldie, and M. E. Morris, “The concurrent validity and responsiveness of the high-level mobility assessment tool for measuring the mobility limitations of people with traumatic brain injury,” Archives of Physical Medicine and Rehabilitation, vol. 87, no. 3, pp. 437–442, 2006. View at Publisher · View at Google Scholar · View at Scopus
  91. G. P. Williams, K. M. Greenwood, V. J. Robertson, P. A. Goldie, and M. E. Morris, “High-level mobility assessment tool (HiMAT): interrater reliability, retest reliability, and internal consistency,” Physical Therapy, vol. 86, no. 3, pp. 395–400, 2006. View at Google Scholar · View at Scopus
  92. C. K. Balasubramanian, “The community balance and mobility scale alleviates the ceiling effects observed in currently used gait and balance assessments for the community dwelling older adults,” Journal of Geriatric Physical Therapy, 2014. View at Publisher · View at Google Scholar
  93. E. L. Inness, J. A. Howe, E. N. Szwedo, S. B. Jaglal, W. E. McIlroy, and M. C. Verrier, “Measuring balance and mobility after traumatic brain injury: validation of the community balance and mobility scale (CB&M),” Physiotherapy Canada, vol. 63, no. 2, pp. 199–208, 2011. View at Publisher · View at Google Scholar · View at Scopus
  94. F. V. Wright, J. Ryan, and K. Brewer, “Reliability of the Community Balance and Mobility Scale (CB&M) in high-functioning school-aged children and adolescents who have an acquired brain injury,” Brain Injury, vol. 24, no. 13-14, pp. 1585–1594, 2010. View at Publisher · View at Google Scholar · View at Scopus
  95. J. A. Howe, E. L. Inness, A. Venturini, J. I. Williams, and M. C. Verrier, “The community balance and mobility scale: a balance measure for individuals with traumatic brain injury,” Clinical Rehabilitation, vol. 20, no. 10, pp. 885–895, 2006. View at Publisher · View at Google Scholar · View at Scopus
  96. S. Knorr, B. Brouwer, and S. J. Garland, “Validity of the community balance and mobility scale in community-dwelling persons after stroke,” Archives of Physical Medicine and Rehabilitation, vol. 91, no. 6, pp. 890–896, 2010. View at Publisher · View at Google Scholar · View at Scopus
  97. S. Bandinelli, M. Pozzi, F. Lauretani et al., “Adding challenge to performance-based tests of walking: the Walking InCHIANTI Toolkit (WIT),” The American Journal of Physical Medicine and Rehabilitation, vol. 85, no. 12, pp. 986–991, 2006. View at Publisher · View at Google Scholar · View at Scopus
  98. P. F. Tang, S. Moore, and M. H. Woollacott, “Correlation between two clinical balance measures in older adults: functional mobility and sensory organization test,” Journals of Gerontology A: Biological Sciences and Medical Sciences, vol. 53, no. 2, pp. M140–M146, 1998. View at Google Scholar · View at Scopus
  99. C. M. Said, P. A. Goldie, A. E. Patla, and W. A. Sparrow, “Effect of stroke on step characteristics of obstacle crossing,” Archives of Physical Medicine and Rehabilitation, vol. 82, no. 12, pp. 1712–1719, 2001. View at Publisher · View at Google Scholar · View at Scopus
  100. V. Weerdesteyn, R. van Swigchem, H. J. R. van Duijnhoven, and A. C. H. Geurts, “Why stroke patients stop walking when talking,” Journal of the American Geriatrics Society, vol. 55, no. 10, p. 1691, 2007. View at Publisher · View at Google Scholar · View at Scopus
  101. V. Weerdesteyn, B. Nienhuis, A. C. H. Geurts, and J. Duysens, “Age-related deficits in early response characteristics of obstacle avoidance under time pressure,” The Journals of Gerontology A: Biological Sciences and Medical Sciences, vol. 62, no. 9, pp. 1042–1047, 2007. View at Google Scholar · View at Scopus
  102. D. J. Clark and C. Patten, “Eccentric versus concentric resistance training to enhance neuromuscular activation and walking speed following stroke,” Neurorehabilitation and Neural Repair, vol. 27, no. 4, pp. 335–344, 2013. View at Publisher · View at Google Scholar · View at Scopus
  103. C. M. Tyrell, M. A. Roos, K. S. Rudolph, and D. S. Reisman, “Influence of systematic increases in treadmill walking speed on gait kinematics after stroke,” Physical Therapy, vol. 91, no. 3, pp. 392–403, 2011. View at Publisher · View at Google Scholar · View at Scopus
  104. C. A. Robinson, A. Shumway-Cook, P. N. Matsuda, and M. A. Ciol, “Understanding physical factors associated with participation in community ambulation following stroke,” Disability and Rehabilitation, vol. 33, no. 12, pp. 1033–1042, 2011. View at Publisher · View at Google Scholar · View at Scopus
  105. P. W. Duncan, K. J. Sullivan, A. L. Behrman et al., “Body-weight-supported treadmill rehabilitation after stroke,” The New England Journal of Medicine, vol. 364, no. 21, pp. 2026–2036, 2011. View at Publisher · View at Google Scholar · View at Scopus
  106. C. C. Charalambous, H. S. Bonilha, S. A. Kautz, C. M. Gregory, and M. G. Bowden, “Rehabilitating walking speed poststroke with treadmill-based interventions: a systematic review of randomized controlled trials,” Neurorehabilitation and Neural Repair, vol. 27, no. 8, pp. 709–721, 2013. View at Google Scholar
  107. M. Woollacott and A. Shumway-Cook, “Attention and the control of posture and gait: a review of an emerging area of research,” Gait and Posture, vol. 16, no. 1, pp. 1–14, 2002. View at Publisher · View at Google Scholar · View at Scopus
  108. P. Plummer-D'Amato, L. J. P. Altmann, D. Saracino, E. Fox, A. L. Behrman, and M. Marsiske, “Interactions between cognitive tasks and gait after stroke: a dual task study,” Gait and Posture, vol. 27, no. 4, pp. 683–688, 2008. View at Publisher · View at Google Scholar · View at Scopus
  109. D. Hyndman, A. Ashburn, L. Yardley, and E. Stack, “Interference between balance, gait and cognitive task performance among people with stroke living in the community,” Disability and Rehabilitation, vol. 28, no. 13-14, pp. 849–856, 2006. View at Publisher · View at Google Scholar · View at Scopus
  110. A. Bowen, R. Wenman, J. Mickelborough, J. Foster, E. Hill, and R. Tallis, “Dual-task effects of talking while walking on velocity and balance following a stroke,” Age and Ageing, vol. 30, no. 4, pp. 319–323, 2001. View at Publisher · View at Google Scholar · View at Scopus
  111. J. Cockburn, P. Haggard, J. Cock, and C. Fordham, “Changing patterns of cognitive-motor interference (CMI) over time during recovery from stroke,” Clinical Rehabilitation, vol. 17, no. 2, pp. 167–173, 2003. View at Publisher · View at Google Scholar · View at Scopus
  112. P. Haggard, J. Cockburn, J. Cock, C. Fordham, and D. Wade, “Interference between gait and cognitive tasks in a rehabilitating neurological population,” Journal of Neurology Neurosurgery and Psychiatry, vol. 69, no. 4, pp. 479–486, 2000. View at Publisher · View at Google Scholar · View at Scopus
  113. P. Plummer-D'Amato, L. J. P. Altmann, A. L. Behrman, and M. Marsiske, “Interference between cognition, double-limb support, and swing during gait in community-dwelling individuals poststroke,” Neurorehabilitation and Neural Repair, vol. 24, no. 6, pp. 542–549, 2010. View at Publisher · View at Google Scholar · View at Scopus
  114. S. Kemper, J. McDowd, P. Pohl, R. Herman, and S. Jackson, “Revealing language deficits following stroke: the cost of doing two things at once,” Aging, Neuropsychology, and Cognition, vol. 13, no. 1, pp. 115–139, 2006. View at Publisher · View at Google Scholar · View at Scopus
  115. P. Plummer-D'Amato, A. Kyvelidou, D. Sternad, B. Najafi, R. M. Villalobos, and D. Zurakowski, “Training dual-task walking in community-dwelling adults within 1 year of stroke: a protocol for a single-blind randomized controlled trial,” BMC Neurology, vol. 12, article 129, 2012. View at Publisher · View at Google Scholar · View at Scopus
  116. P. L. Phan, J. M. Blennerhassett, N. Lythgo, W. Dite, and M. E. Morris, “Over-ground walking on level and sloped surfaces in people with stroke compared to healthy matched adults,” Disability and Rehabilitation, vol. 35, no. 15, pp. 1302–1307, 2013. View at Publisher · View at Google Scholar · View at Scopus
  117. C. Bonnyaud, R. Zory, D. Pradon, N. Vuillerme, and N. Roche, “Clinical and biomechanical factors which predict timed up and down stairs test performance in hemiparetic patients,” Gait and Posture, vol. 38, no. 3, pp. 466–470, 2013. View at Publisher · View at Google Scholar · View at Scopus
  118. A. C. Novak and B. Brouwer, “Kinematic and kinetic evaluation of the stance phase of stair ambulation in persons with stroke and healthy adults: a pilot study,” Journal of Applied Biomechanics, vol. 29, no. 4, pp. 443–452, 2013. View at Google Scholar
  119. S. S. Ng, H. H. Ng, K. M. Chan, J. C. Lai, A. K. To, and C. W. Yeung, “Reliability of the 12-step ascend and descend test and its correlation with motor function in people with chronic stroke,” Journal of Rehabilitation Medicine, vol. 45, no. 2, pp. 123–129, 2013. View at Publisher · View at Google Scholar · View at Scopus
  120. C. Carvalho, K. S. Sunnerhagen, and C. Willén, “Walking speed and distance in different environments of subjects in the later stage post-stroke,” Physiotherapy Theory and Practice, vol. 26, no. 8, pp. 519–527, 2010. View at Publisher · View at Google Scholar · View at Scopus
  121. K. Donovan, S. E. Lord, H. K. McNaughton, and M. Weatherall, “Mobility beyond the clinic: the effect of environment on gait and its measurement in community-ambulant stroke survivors,” Clinical Rehabilitation, vol. 22, no. 6, pp. 556–563, 2008. View at Publisher · View at Google Scholar · View at Scopus
  122. S. E. Lord, L. Rochester, M. Weatherall, K. M. McPherson, and H. K. McNaughton, “The effect of environment and task on gait parameters after stroke: a randomized comparison of measurement conditions,” Archives of Physical Medicine and Rehabilitation, vol. 87, no. 7, pp. 967–973, 2006. View at Publisher · View at Google Scholar · View at Scopus
  123. D. Taylor, C. M. Stretton, S. Mudge, and N. Garrett, “Does clinic-measured gait speed differ from gait speed measured in the community in people with stroke?” Clinical Rehabilitation, vol. 20, no. 5, pp. 438–444, 2006. View at Publisher · View at Google Scholar · View at Scopus
  124. S. Tyson and L. Connell, “The psychometric properties and clinical utility of measures of walking and mobility in neurological conditions: a systematic review,” Clinical Rehabilitation, vol. 23, no. 11, pp. 1018–1033, 2009. View at Publisher · View at Google Scholar · View at Scopus
  125. S. Hwang, H.-S. Jeon, C. Yi, O. Kwon, S. Cho, and S. You, “Locomotor imagery training improves gait performance in people with chronic hemiparetic stroke: a controlled clinical trial,” Clinical Rehabilitation, vol. 24, no. 6, pp. 514–522, 2010. View at Publisher · View at Google Scholar · View at Scopus
  126. G. Williams, J. Rosie, S. Denisenko, and D. Taylor, “Normative values for the high-level mobility assessment tool (HiMAT),” International Journal of Therapy and Rehabilitation, vol. 16, no. 7, pp. 370–374, 2009. View at Google Scholar
  127. A. Shumway-Cook, J. M. Guralnik, C. L. Phillips et al., “Age-associated declines in complex walking task performance: the walking InCHIANTI Toolkit,” Journal of the American Geriatrics Society, vol. 55, no. 1, pp. 58–65, 2007. View at Publisher · View at Google Scholar · View at Scopus
  128. B. R. Bloem, V. V. Valkenburg, M. Slabbekoorn, and M. D. Willemsen, “The multiple tasks test: development and normal strategies,” Gait & Posture, vol. 14, no. 3, pp. 191–202, 2001. View at Publisher · View at Google Scholar · View at Scopus
  129. B. R. Bloem, V. V. Valkenburg, M. Slabbekoorn, and J. G. van Dijk, “The multiple tasks test. Strategies in Parkinson's disease,” Experimental Brain Research, vol. 137, no. 3-4, pp. 478–486, 2001. View at Publisher · View at Google Scholar · View at Scopus
  130. C. A. Robinson, P. N. Matsuda, M. A. Ciol, and A. Shumway-Cook, “Participation in community walking following stroke: the influence of self-perceived environmental barriers,” Physical Therapy, vol. 93, no. 5, pp. 620–627, 2013. View at Publisher · View at Google Scholar · View at Scopus
  131. C. A. Velozo, R. T. Seel, S. Magasi, A. W. Heinemann, and S. Romero, “Improving measurement methods in rehabilitation: core concepts and recommendations for scale development,” Archives of Physical Medicine and Rehabilitation, vol. 93, no. 8 supplement, pp. S154–S163, 2012. View at Publisher · View at Google Scholar · View at Scopus
  132. B. B. Reeve, R. D. Hays, J. B. Bjorner et al., “Psychometric evaluation and calibration of health-related quality of life item banks: plans for the Patient-Reported Outcomes Measurement Information System (PROMIS),” Medical Care, vol. 45, supplement 1, no. 5, pp. S22–S31, 2007. View at Publisher · View at Google Scholar · View at Scopus
  133. S. E. Lord and L. Rochester, “Measurement of community ambulation after stroke: current status and future developments,” Stroke, vol. 36, no. 7, pp. 1457–1461, 2005. View at Publisher · View at Google Scholar · View at Scopus
  134. N. K. Latham and S. M. Haley, “Measuring functional outcomes across postacute care: current challenges and future directions,” Critical Reviews in Physical and Rehabilitation Medicine, vol. 15, no. 2, pp. 83–98, 2003. View at Publisher · View at Google Scholar · View at Scopus
  135. C. H. Chang and B. B. Reeve, “Item response theory and its applications to patient-reported outcomes measurement,” Evaluation and the Health Professions, vol. 28, no. 3, pp. 264–282, 2005. View at Publisher · View at Google Scholar · View at Scopus
  136. “Georg Rasch and Benjamin D. Wright: The Early Years,” http://www.rasch.org/rmt/rmt0.htm.
  137. W.-H. Hou, C.-L. Shih, Y.-T. Chou et al., “Development of a computerized adaptive testing system of the Fugl-Meyer motor scale in stroke patients,” Archives of Physical Medicine and Rehabilitation, vol. 93, no. 6, pp. 1014–1020, 2012. View at Publisher · View at Google Scholar · View at Scopus
  138. I.-P. Hsueh, J.-H. Chen, C.-H. Wang, W.-H. Hou, and C.-L. Hsieh, “Development of a computerized adaptive test for assessing activities of daily living in outpatients with stroke,” Physical Therapy, vol. 93, no. 5, pp. 681–693, 2013. View at Publisher · View at Google Scholar · View at Scopus
  139. I. P. Hsueh, J. H. Chen, C. H. Wang et al., “Development of a computerized adaptive test for assessing balance function in patients with stroke,” Physical Therapy, vol. 90, no. 9, pp. 1336–1344, 2010. View at Publisher · View at Google Scholar · View at Scopus
  140. M. F. Levin, J. A. Kleim, and S. L. Wolf, “What do motor “recovery” and “compensation” mean in patients following stroke?” Neurorehabilitation and Neural Repair, vol. 23, no. 4, pp. 313–319, 2009. View at Google Scholar
  141. A. L. Behrman, E. Ardolino, L. R. Vanhiel et al., “Assessment of functional improvement without compensation reduces variability of outcome measures after human spinal cord injury,” Archives of Physical Medicine and Rehabilitation, vol. 93, no. 9, pp. 1518–1529, 2012. View at Publisher · View at Google Scholar · View at Scopus