Table of Contents Author Guidelines Submit a Manuscript
Science and Technology of Nuclear Installations
Volume 2010, Article ID 163279, 11 pages
http://dx.doi.org/10.1155/2010/163279
Research Article

Influence of Modelling Options in RELAP5/SCDAPSIM and MAAP4 Computer Codes on Core Melt Progression and Reactor Pressure Vessel Integrity

1Faculty of Electrical Engineering and Computing, University of Zagreb, Unska 3, 10000 Zagreb, Croatia
2ENCONET d.o.o., Miramarska 20, 10000 Zagreb, Croatia
3NPP Krško, Engineering Department, Vrbina 12, 8270 Krško, Slovenia

Received 30 April 2009; Accepted 29 August 2009

Academic Editor: Alessandro Petruzzi

Copyright © 2010 Siniša Šadek et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

RELAP5/SCDAPSIM and MAAP4 are two widely used severe accident computer codes for the integral analysis of the core and the reactor pressure vessel behaviour following the core degradation. The objective of the paper is the comparison of code results obtained by application of different modelling options and the evaluation of influence of thermal hydraulic behaviour of the plant on core damage progression. The analysed transient was postulated station blackout in NPP Krško with a leakage from reactor coolant pump seals. Two groups of calculations were performed where each group had a different break area and, thus, a different leakage rate. Analyses have shown that MAAP4 results were more sensitive to varying thermal hydraulic conditions in the primary system. User-defined parameters had to be carefully selected when the MAAP4 model was developed, in contrast to the RELAP5/SCDAPSIM model where those parameters did not have any significant impact on final results.