Table of Contents Author Guidelines Submit a Manuscript
Science and Technology of Nuclear Installations
Volume 2012, Article ID 175703, 6 pages
Research Article

Squeezing Force of the Magnetorheological Fluid Isolating Damper for Centrifugal Fan in Nuclear Power Plant

1Chongqing Institute of Automobile, Chongqing University of Technology, Chongqing 400054, China
2The Key Laboratory of Manufacture and Test Techniques for Automobile Parts, Chongqing University of Technology, Chongqing 400054, China

Received 15 June 2012; Revised 3 September 2012; Accepted 8 September 2012

Academic Editor: Yan Yang

Copyright © 2012 Jin Huang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


Magnetorheological (MR) disk-type isolating dampers are the semi-active control devices that use MR fluids to produce controllable squeezing force. In this paper, the analytical endeavor into the fluid dynamic modeling of an MR isolating damper is reported. The velocity and pressure distribution of an MR fluid operating in an axisymmetric squeeze model are analytically solved using a biviscosity constitutive model. Analytical solutions for the flow behavior of MR fluid flowing through the parallel channel are obtained. The equation for the squeezing force is derived to provide the theoretical foundation for the design of the isolating damper. The result shows that with the increase of the applied magnetic field strength, the squeezing force is increased.