Table of Contents Author Guidelines Submit a Manuscript
Science and Technology of Nuclear Installations
Volume 2012, Article ID 209542, 10 pages
http://dx.doi.org/10.1155/2012/209542
Research Article

Image-Processing-Based Study of the Interfacial Behavior of the Countercurrent Gas-Liquid Two-Phase Flow in a Hot Leg of a PWR

1Chemical Engineering Department, Simon Bolivar University, Valle de Sartenejas, Baruta, 1080A Caracas, Venezuela
2Department of Mechanical and Industrial Engineering, Faculty of Engineering, Gadjah Mada University, Jalan Grafika No. 2, Yogyakarta 55281, Indonesia
3Helmholtz-Zentrum Dresden-Rossendorf e.V., Institute of Safety Research, P.O. Box 510 119, 01314 Dresden, Germany

Received 20 September 2011; Revised 12 December 2011; Accepted 13 December 2011

Academic Editor: Michio Murase

Copyright © 2012 Gustavo A. Montoya et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. T. Seidel, C. Vallée, D. Lucas, M. Beyer, and Deendarlianto, “Two-Phase Flow Experiments in a Model of the Hot Leg of a Pressurised Water Reactor,” Wissenschaftlich-Technische Berichte/Forschungszentrum Dresden-Rossendorf; FZD-531, 2010.
  2. UPTF-Fachtagung IV, Versuchsergebnisse, Analysen, Mannheim 25. Marz , Siemens AG, KWU, KWU R 11/93/005, 1993.
  3. A. Ohnuki, H. Adachi, and Y. Murao, “Scale effects on countercurrent gas-liquid flow in a horizontal tube connected to an inclined riser,” Nuclear Engineering and Design, vol. 107, no. 3, pp. 283–294, 1988. View at Google Scholar · View at Scopus
  4. S. Wongwises, “Experimental investigation of two-phase countercurrent flow limitation in a bend between horizontal and inclined pipes,” Experimental Thermal and Fluid Science, vol. 8, no. 3, pp. 245–259, 1994. View at Google Scholar · View at Scopus
  5. M. A. Navarro, “Study of countercurrent flow limitation in a horizontal pipe connected to an inclined one,” Nuclear Engineering and Design, vol. 235, no. 10–12, pp. 1139–1148, 2005. View at Publisher · View at Google Scholar · View at Scopus
  6. H. M. Prasser, M. Beyer, H. Carl et al., “The multipurpose thermalhydraulic test facility TOPFLOW: an overview on experimental capabilities, instrumentation and results,” Kerntechnik, vol. 71, no. 4, pp. 163–173, 2006. View at Google Scholar · View at Scopus
  7. Deendarlianto, C. Vallée, D. Lucas, M. Beyer, H. Pietruske, and H. Carl, “Experimental study on the air/water counter-current flow limitation in a model of the hot leg of a pressurized water reactor,” Nuclear Engineering and Design, vol. 238, no. 12, pp. 3389–3402, 2008. View at Publisher · View at Google Scholar · View at Scopus
  8. G. J. Zabaras and A. E. Dukler, “Counter-current gas-liquid annular flow, including the flooding state,” AIChE Journal, vol. 34, no. 3, pp. 389–396, 1988. View at Google Scholar · View at Scopus
  9. Deendarlianto, A. Ousaka, A. Kariyasaki, and T. Fukano, “Investigation of liquid film behavior at the onset of flooding during adiabatic counter-current air-water two-phase flow in an inclined pipe,” Nuclear Engineering and Design, vol. 235, no. 21, pp. 2281–2294, 2005. View at Publisher · View at Google Scholar · View at Scopus
  10. K. H. Ardron and S. Banerjee, “Flooding in an elbow between a vertical and a horizontal or near-horizontal pipe. Part II: theory,” International Journal of Multiphase Flow, vol. 12, no. 4, pp. 543–558, 1986. View at Google Scholar · View at Scopus
  11. S. Wongwises, “Two-phase countercurrent flow in a model of a pressurized water reactor hot leg,” Nuclear Engineering and Design, vol. 166, no. 2, pp. 121–133, 1996. View at Publisher · View at Google Scholar · View at Scopus