Table of Contents Author Guidelines Submit a Manuscript
Science and Technology of Nuclear Installations
Volume 2012, Article ID 878174, 10 pages
http://dx.doi.org/10.1155/2012/878174
Research Article

Heat and Mass Transfer during Hydrogen Generation in an Array of Fuel Bars of a BWR Using a Periodic Unit Cell

Área de Ingeniería en Recursos Energéticos, Universidad Autónoma Metropolitana, Unidad Iztapalapa Avenida San Rafael Atlixco 186, Col. Vicentina, 09340 México, DF, Mexico

Received 18 December 2011; Accepted 1 February 2012

Academic Editor: Alejandro Nuñez-Carrera

Copyright © 2012 H. Romero-Paredes et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. G. Schanz, B. Adroguer, and A. Volchek, “Advanced treatment of zircaloy cladding high-temperature oxidation in severe accident code calculations Part I. Experimental database and basic modeling,” Nuclear Engineering and Design, vol. 232, no. 1, pp. 75–84, 2004. View at Publisher · View at Google Scholar · View at Scopus
  2. C. Duriez, M. Steinbrück, D. Ohai, T. Meleg, J. Birchley, and T. Haste, “Separate-effect tests on zirconium cladding degradation in air ingress situations,” Nuclear Engineering and Design, vol. 239, no. 2, pp. 244–253, 2009. View at Publisher · View at Google Scholar · View at Scopus
  3. M. Steinbrück, “Prototypical experiments relating to air oxidation of Zircaloy-4 at high temperatures,” Journal of Nuclear Materials, vol. 392, no. 3, pp. 531–544, 2009. View at Publisher · View at Google Scholar · View at Scopus
  4. E. Beuzet, J.-S. Lamy, A. Bretault, and E. Simoni, “Modelling of Zry-4 cladding oxidation by air, under severe accident conditions using the MAAP4 code,” Nuclear Engineering and Design, vol. 241, no. 4, pp. 1217–1224, 2011. View at Publisher · View at Google Scholar
  5. W. Breitung and P. Royl, “Procedure and tools for deterministic analysis and control of hydrogen behavior in severe accidents,” Nuclear Engineering and Design, vol. 202, no. 2-3, pp. 249–268, 2000. View at Publisher · View at Google Scholar · View at Scopus
  6. X. G. Huang, Y. H. Yang, and S. X. Zhang, “Analysis of hydrogen risk mitigation with passive autocatalytic recombiner system in CPR1000 NPP during a hypothetical station blackout,” Annals of Nuclear Energy, vol. 38, no. 12, pp. 2762–2769, 2011. View at Publisher · View at Google Scholar
  7. P. Royl, H. Rochholz, W. Breitung, J. R. Travis, and G. Necker, “Analysis of steam and hydrogen distributions with PAR mitigation in NPP containments,” Nuclear Engineering and Design, vol. 202, no. 2-3, pp. 231–248, 2000. View at Publisher · View at Google Scholar · View at Scopus
  8. D. R. Olander, “Materials chemistry and transport modeling for severe accident analyses in light-water reactors I: external cladding oxidation,” Nuclear Engineering and Design, vol. 148, no. 2-3, pp. 253–271, 1994. View at Google Scholar · View at Scopus
  9. F. Fichot, B. Adroguer, A. Volchek, and Y. Zvonarev, “Advanced treatment of zircaloy cladding high-temperature oxidation in severe accident code calculations Part III. Verification against representative transient tests,” Nuclear Engineering and Design, vol. 232, no. 1, pp. 97–109, 2004. View at Publisher · View at Google Scholar · View at Scopus
  10. X. Shi and X. Cao, “Study and assessment of Zry cladding oxidation model under severe accident in PWR,” in Proceedings of the Asia-Pacific Power and Energy Engineering Conference (APPEEC '11), pp. 1–5, Wuhan, China, March 2011. View at Publisher · View at Google Scholar
  11. C. Duriez, T. Dupont, B. Schmet, and F. Enoch, “Zircaloy-4 and M5 high temperature oxidation and nitriding in air,” Journal of Nuclear Materials, vol. 380, no. 1–3, pp. 30–45, 2008. View at Publisher · View at Google Scholar · View at Scopus
  12. L. Gosmain, C. Valot, D. Ciosmak, and O. Sicardy, “Study of stress effects in the oxidation of Zircaloy-4,” Solid State Ionics, vol. 141-142, pp. 633–640, 2001. View at Publisher · View at Google Scholar · View at Scopus
  13. V. Lacour, Modélisation de la production d’hydrogène lors de la phase de renoyage des coeurs de réacteurs nucléaires en situation d’accidents graves, Ph.D. thesis, Ecole Nationale Supérieure des Mines de Paris, November 2001.
  14. V. F. Urbanic and T. R. Heidrick, “High-temperature oxidation of zircaloy-2 and zircaloy-4 in steam,” Journal of Nuclear Materials, vol. 75, no. 2, pp. 251–261, 1978. View at Google Scholar · View at Scopus
  15. S. Leistikow and G. Schanz, “Oxidation kinetics and related phenomena of zircaloy-4 fuel cladding exposed to high temperature steam and hydrogen-steam mixtures under PWR accident conditions,” Nuclear Engineering and Design, vol. 103, no. 1, pp. 65–84, 1987. View at Google Scholar · View at Scopus
  16. J. T. Prater, E. L. Courtright et al., “Oxidation of Zircaloy-4 in steam at 1300 to 2400°C Zirconium in the nuclear industry,” in Proceedings of the 7th International Symposium, vol. 939 of ASTM STP, pp. 489–303, Adamson R. B., Van Swan L. F. P., Philadelphia, Pa, USA, 1987.
  17. A. Volchek, Y. Zvonarev, and G. Schanz, “Advanced treatment of Zircaloy cladding high-temperature oxidation in severe accident code calculations PART II. Best-fitted parabolic correlations,” Nuclear Engineering and Design, vol. 232, no. 1, pp. 85–96, 2004. View at Publisher · View at Google Scholar · View at Scopus
  18. M. S. Veshchunov, A. V. Berdyshev, A. V. Boldyrev, L. V. Matweev, A. V. Palagin, and V. E. Shestak, “Physico-chemical behavior of Zircaloy fuel rod cladding tubes during lwr severe accident reflood. Part II: modelling of quench phenomena,” FZKA 5864, Forschungszentrum Karlsruhe, 1997. View at Google Scholar
  19. C. M. Allison et al., SCDAP/RELAP5/MOD 3.1 Code Manual, MATPRO—a Library of Material Properties for Light Water Reactors Accident Analysis, NUREG/CR – 6150, EGG-2720, vol. 4, EG&G Idaho, Idaho Falls, Idaho, USA, 1995.
  20. A. Roine, HSC Chemistry 7.11, Outokumpu Research, Oy, Pori, Finland, 2006.
  21. G. Espinosa-Paredes, J. B. Morales-Sandoval, R. Vázquez-Rodríguez, and E. G. Espinosa-Martínez, “Constitutive laws for the neutron density current,” Annals of Nuclear Energy, vol. 35, no. 10, pp. 1963–1967, 2008. View at Publisher · View at Google Scholar · View at Scopus
  22. M. Quintard and S. Whitaker, “One- and Two-Equation Models for Transient Diffusion Processes in Two-Phase Systems,” Advances in Heat Transfer, vol. 23, no. C, pp. 369–464, 1993. View at Publisher · View at Google Scholar · View at Scopus
  23. N. E. Todreas and M. S. Kazimi, Nuclear Systems I: Thermal Hydraulic Fundamentals, Hemisphere, Washington, DC, USA, 1990.