Table of Contents Author Guidelines Submit a Manuscript
Science and Technology of Nuclear Installations
Volume 2013 (2013), Article ID 231501, 14 pages
http://dx.doi.org/10.1155/2013/231501
Research Article

The Effective Convectivity Model for Simulation of Molten Metal Layer Heat Transfer in a Boiling Water Reactor Lower Head

Division of Nuclear Power Safety, Royal Institute of Technology, Roslagstullsbacken 21, D5, 10691 Stockholm, Sweden

Received 3 April 2013; Accepted 7 May 2013

Academic Editor: Xu Cheng

Copyright © 2013 Chi-Thanh Tran and Pavel Kudinov. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. L. Rempe, S. A. Chavez, G. L. Thinnes et al., “Light water reactor lower head failure analysis,” Tech. Rep. NUREG/CR-5642, EGG-2618, Idaho National Engineering Laboratory, Washington, DC, USA, 1993. View at Google Scholar
  2. P. Kudinov, A. Karbojian, W. M. Ma, and T. N. Dinh, “An experimental study on debris formation with corium stimulant materials,” in Proceedings of the International Congress on Advances in Nuclear Power Plants (ICAPP '08), Anaheim, Calif, USA, June 2008.
  3. C. T. Tran and T. N. Dinh, “Application of the phase-change effective convectivity model to analysis of core melt pool formation and heat transfer in a BWR lower head,” in Proceedings of the Annual Meeting of the American Nuclear Society, pp. 617–618, Anaheim, Calif, USA, June 2008. View at Scopus
  4. V. G. Asmolov, S. V. Bechta, V. B. Khabensky et al., “Partitioning of U, Zr and Fe between molten oxidic and metallic corium,” in Proceedings of the MASCA Seminar, Aix-en-Provence, France, June 2004.
  5. C. T. Tran, P. Kudinov, and T. N. Dinh, “An approach to numerical simulation and analysis of molten corium coolability in a boiling water reactor lower head,” Nuclear Engineering and Design, vol. 240, no. 9, pp. 2148–2159, 2010. View at Publisher · View at Google Scholar · View at Scopus
  6. C. T. Tran and T. N. Dinh, “An effective convectivity model for simulation of in-vessel core melt progression in boiling water reactor,” in Proceedings of the International Congress on Advances in Nuclear Power Plants (ICAPP '07), Nice Acropolis, France, May 2007.
  7. C. T. Tran and T. N. Dinh, “Simulation of core melt pool formation in a Reactor pressure vessel lower head using an Effective Convectivity Model,” Nuclear Engineering and Technology, vol. 41, no. 7, pp. 929–944, 2009. View at Google Scholar · View at Scopus
  8. T. G. Theofanous, C. Liu, S. Additon, S. Angelini, O. Kymalainen, and T. Salmassi, “In-vessel coolability and retention of a core melt,” DOE/ID-1046, 1994. View at Google Scholar
  9. SCDAP/RELAP5-3D Code Development Team, “SCDAP/RELAP5-3D Code Manual,” Report INEEL/EXT-02-00589, Revision 2.2, Idaho National Engineering and Environmental Laboratory, 2003. View at Google Scholar
  10. R. O. Gauntt, R. K. Cole, C. M. Erickson et al., MELCOR Computer Code Manual, Core (COR) Package Reference Manuals, NUREG/CR-6119, vol. 2, Rev. 2, Version 1.8.6, 2005.
  11. S. Globe and D. Dropkin, “Natural-convection heat transfer in liquid confined by two horizontal plates and heated from below,” Journal of Heat Transfer, vol. 81, pp. 24–28, 1959. View at Google Scholar
  12. T. G. Theofanous, M. Maguire, S. Angelini, and T. Salmassi, “The first results from the ACOPO experiment,” Nuclear Engineering and Design, vol. 169, no. 1–3, pp. 49–57, 1997. View at Google Scholar · View at Scopus
  13. MAAP4 Users Manual, vol. 2, Fauske Associated, 1999.
  14. S. W. Churchill and H. H. S. Chu, “Correlating equations for laminar and turbulent free convection from a vertical plate,” International Journal of Heat and Mass Transfer, vol. 18, no. 11, pp. 1323–1329, 1975. View at Google Scholar · View at Scopus
  15. M. Eddi, “Study on heat transfer in lower head of nuclear power plant vessel during a severe accident,” in Proceedings of 9th International Topical Meeting on Nuclear Reactor Thermal Hydraulics (NURETH '99), San Francisco, Calif, USA, October 1999.
  16. G. Grotzbach, “Direct numerical simulation of laminar and turbulent benard convection,” Journal of Fluid Mechanics, vol. 119, pp. 27–53, 1982. View at Google Scholar
  17. R. Verzicco and R. Camussi, “Prandtl number effects in convective turbulence,” Journal of Fluid Mechanics, vol. 383, pp. 55–73, 1999. View at Google Scholar · View at Scopus
  18. R. M. Kerr and J. R. Herring, “Prandtl number dependence of Nusselt number in direct numerical simulations,” Journal of Fluid Mechanics, vol. 419, pp. 325–344, 2000. View at Google Scholar · View at Scopus
  19. I. Otic, G. Grotzbach, and M. Worner, “Analysis and modelling of the temperature variance equation in turbulent natural convection for low-prandtl fluids,” Journal of Fluid Mechanics, vol. 525, pp. 237–261, 2005. View at Google Scholar
  20. V. A. Bui and T. N. Dinh, “Modeling of heat transfer in heated-generating liquid pools by an effective diffusivity-convectivity approach,” in Proceedings of 2nd European Thermal-Sciences Conference, pp. 1365–1372, Rome, Italy, 1996.
  21. B. R. Sehgal, V. A. Bui, T. N. Dinh, and R. R. Nourgaliev, “Heat transfer process in reactor vessel lower plenum during a late phase of in-vessel core melt progression,” Advances in Nuclear Science and Technology, vol. 26, pp. 103–135, 1998. View at Google Scholar
  22. E. R. G. Eckert and T. W. Jackson, “Analysis of turbulent free convection boundary layer on flat plate,” NACA Technical Note 2207, 1950. View at Google Scholar
  23. V. R. Voller and C. R. Swaminathan, “General source-based method for solidification phase change,” Numerical Heat Transfer B, vol. 19, no. 2, pp. 175–189, 1991. View at Google Scholar · View at Scopus
  24. M. G. Worster, “Natural convection in a mushy layer,” Journal of Fluid Mechanics, vol. 224, pp. 335–359, 1991. View at Google Scholar · View at Scopus
  25. J. S. Wettlaufer, M. G. Worster, and H. E. Huppert, “Natural convection during solidification of an alloy from above with application to the evolution of sea ice,” Journal of Fluid Mechanics, vol. 344, pp. 291–316, 1997. View at Google Scholar · View at Scopus
  26. R. Trivedi, H. Miyahara, P. Mazumder, E. Simsek, and S. N. Tewari, “Directional solidification microstructures in diffusive and convective regimes,” Journal of Crystal Growth, vol. 222, no. 1-2, pp. 365–379, 2001. View at Publisher · View at Google Scholar · View at Scopus
  27. L. G. Margolin, W. J. Rider, and F. F. Grinstein, “Modeling turbulent flow with implicit LES,” Journal of Turbulence, vol. 7, pp. 1–27, 2006. View at Publisher · View at Google Scholar · View at Scopus
  28. S. Grossmann and D. Lohse, “Scaling in thermal convection: a unifying theory,” Journal of Fluid Mechanics, vol. 407, pp. 27–56, 2000. View at Google Scholar · View at Scopus
  29. R. J. Goldstein, H. D. Chiang, and D. L. See, “High-Rayleigh-number convection in a horizontal enclosure,” Journal of Fluid Mechanics, vol. 213, pp. 111–126, 1990. View at Google Scholar · View at Scopus
  30. P. E. Roche, B. Castaing, B. Chabaud, and B. Hebral, “Prandtl and rayleigh numbers dependences in rayleigh-benard convection,” Europhysics Letters, vol. 58, no. 5, pp. 693–698, 2002. View at Google Scholar
  31. J. L. O'Toole and P. L. Silveston, “Correlations of convective heat transfer in confined horizontal layers,” AIChE Chemical Engineering Progress Symposium Series, vol. 57, no. 32, pp. 81–86, 1961. View at Google Scholar
  32. S. Cioni, S. Ciliberto, and J. Sommeria, “Strongly turbulent Rayleigh-Bénard convection in mercury: comparison with results at moderate Prandtl number,” Journal of Fluid Mechanics, vol. 335, pp. 111–140, 1997. View at Google Scholar · View at Scopus
  33. C. Gau and R. Viskanta, “Effect of natural convection on solidification from above and melting from below of a pure metal,” International Journal of Heat and Mass Transfer, vol. 28, no. 3, pp. 573–587, 1985. View at Google Scholar · View at Scopus
  34. A. A. Mohamad and R. Viskanta, “Modeling of turbulent buoyant flow and heat transfer in liquid metals,” International Journal of Heat and Mass Transfer, vol. 36, no. 11, pp. 2815–2826, 1993. View at Google Scholar · View at Scopus
  35. W. Z. Cao and D. Poulikakos, “Solidification of an alloy in a cavity cooled through its top surface,” International Journal of Heat and Mass Transfer, vol. 33, no. 3, pp. 427–434, 1990. View at Google Scholar · View at Scopus
  36. C. T. Tran and T. N. Dinh, “Analysis of melt pool heat transfer in a BWR lower head,” in Transactions of ANS Winter Meeting, pp. 629–631, Albuquerque, NM, USA, November 2006.
  37. F. Cadinu, C. T. Tran, and P. Kudinov, “Analysis of in-vessel coolability and retention with control rod guide tube cooling in boiling water reactors,” in Proceedings of the NEA/SARNET In-Vessel Coolability (IVC) Workshop, Issy-les-Moulineaux, France, October 2009.
  38. W. Villanueva, C.-T. Tran, and P. Kudinov, “Coupled thermo-mechanical creep analysis for boiling water reactor pressure vessel lower head,” Nuclear Engineering and Design, vol. 249, pp. 146–153, 2012. View at Publisher · View at Google Scholar · View at Scopus
  39. C. Torregrosa, W. Villanueva, C.-T. Tran, and P. Kudinov, “Coupled 3D thermo-mechanical analysis of a nordic BWR vessel failure and timing,” in Proceedings of the 15th International Topical Meeting on Nuclear Reactor Thermal Hydraulics (NURETH '13), Pisa, Italy, May 2013, Paper 495.
  40. A. Goronovski, W. Villanueva, C.-T. Tran, and P. Kudinov, “The Effect of internal pressure and debris bed thermal properties on BWR vessel lower head failure and timing,” in Proceedings of the 15th International Topical Meeting on Nuclear Reactor Thermal Hydraulics (NURETH '13), Pisa, Italy, May 2013, Paper 500.