Table of Contents Author Guidelines Submit a Manuscript
Science and Technology of Nuclear Installations
Volume 2013, Article ID 412349, 10 pages
http://dx.doi.org/10.1155/2013/412349
Research Article

Economic Viability of Metallic Sodium-Cooled Fast Reactor Fuel in Korea

1Korea Atomic Energy Research Institute, 1045 Daedeokdaero, Yuseung-Gu, Daejeon 305-353, Republic of Korea
2Department of Nuclear and Quantum Engineering, Korea Advanced Institute of Science and Technology, 291 Daehakro, Yuseong-Gu, Daejeon 305-353, Republic of Korea

Received 7 November 2012; Revised 18 February 2013; Accepted 19 February 2013

Academic Editor: Michael F. Simpson

Copyright © 2013 S. K. Kim et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

This paper evaluates whether SFR metallic nuclear fuel can be economical. To make this determination, the cost of SFCF (SFR fuel cycle facilities) was estimated, and the break-even point of the manufacturing cost of SFR metallic nuclear fuel for direct disposal option was then calculated. As a result of the cost estimation, the levelized unit cost (LUC) for SFCF was calculated to be 5,311 $/kgHM, and the break-even point was calculated to be $5,267/kgHM. Therefore, the cost difference between LUC and the break-even point is not only small but is also within the relevant range of the uncertainty level of Class 3 in accordance with a generic cost estimate classification matrix of AACE (the Association for the Advancement of Cost Engineering). This means it is very difficult to judge the economical feasibility of SFR metallic nuclear fuel because as of today there are no commercial facilities in Korea or the world. The economic feasibility of SFR metallic nuclear fuel, however, will be enhanced if the mass production of SFCF becomes possible in the future.