Table of Contents Author Guidelines Submit a Manuscript
Science and Technology of Nuclear Installations
Volume 2013 (2013), Article ID 565246, 9 pages
Research Article

Uncertainty and Sensitivity Studies with TRACE-SUSA and TRACE-DAKOTA by Means of Transient BFBT Data

1Karlsruhe Institute of Technology, Institute for Neutron Physics and Reactor Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
2Departamento de Sistemas Energeticos ETSI Minas, Universidad Politecnica de Madrid, Alenza 4, 28003 Madrid, Spain

Received 16 October 2012; Accepted 25 December 2012

Academic Editor: Borut Mavko

Copyright © 2013 Wadim Jaeger et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


In the present paper, an uncertainty and sensitivity study is performed for transient void fraction and pressure drop measurements. Two transients have been selected from the NUPEC BFBT database. The first one is a turbine trip without bypass and the second one is a trip of a recirculation pump. TRACE (version 5.0 patch 2) is used for the thermohydraulic study and SUSA and DAKOTA are used for the quantification of the model uncertainties and the evaluation of the sensitivities. As uncertain parameters geometrical values, hydraulic diameter, and wall roughness are considered while mass flow rate, power, pressure, and inlet subcooling (inlet temperature) are chosen as boundary and input conditions. Since these parameters change with time, it is expected that the importance of them on pressure drop and void fraction will change, too. The results show that the pressure drop is mostly sensitive to geometrical variations like the hydraulic diameter and the form loss coefficient of the spacer grid. For low void fractions, the parameter of the highest importance is the inlet temperature/subcooling while at higher void fraction the power is also of importance.