Table of Contents Author Guidelines Submit a Manuscript
Science and Technology of Nuclear Installations
Volume 2013 (2013), Article ID 590684, 10 pages
Research Article

Solution Monitoring Evaluated by Proliferation Risk Assessment and Fuzzy Optimization Analysis for Safeguards in a Reprocessing Process

Department of Science and Technology for Nuclear Material Management, Japan Atomic Energy Agency, 2-4 Shirane, Shirakata, Tokai-mura, Naka-gun, Ibaraki-ken 319-1195, Japan

Received 21 November 2012; Accepted 17 January 2013

Academic Editor: Jack D. Law

Copyright © 2013 Mitsutoshi Suzuki and Norichika Terao. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


Solution monitoring (SM) has been used in a nuclear reprocessing plant as an additional measure to provide assurance that the plant is operated as declared. The inline volume and density monitoring equipment with dip tubes is important for safety and safeguards purposes and is a typical example of safeguards by design (SBD). Recently safety, safeguards, and security by design (3SBD) are proposed to promote an efficient and effective generation of nuclear energy. In 3SBD, proliferation risk assessment has the potential to consider likelihood of the incidence and proliferation risk in safeguards. In this study, risk assessment methodologies for safeguards and security are discussed and several mathematical methods are presented to investigate risk notion applied to intentional acts of facility misuse in an uncertainty environment. Proliferation risk analysis with the Markov model, deterrence effect with the game model, and SBD with fuzzy optimization are shown in feasibility studies to investigate the potential application of the risk and uncertainty analyses in safeguards. It is demonstrated that the SM is an effective measurement system using risk-informed and cost-effective SBD, even though there are inherent difficulties related to the possibility of operator’s falsification.