Table of Contents Author Guidelines Submit a Manuscript
Science and Technology of Nuclear Installations
Volume 2013 (2013), Article ID 641863, 26 pages
http://dx.doi.org/10.1155/2013/641863
Research Article

Unstructured Grids and the Multigroup Neutron Diffusion Equation

TECNA Estudios y Proyectos de Ingeniería S.A., Encarnación Ezcurra 365, C1107CLA Buenos Aires, Argentina

Received 22 May 2013; Revised 20 July 2013; Accepted 20 July 2013

Academic Editor: Arkady Serikov

Copyright © 2013 German Theler. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. G. Glasstone and S. Bell, Nuclear Reactor Theory, Krieger Publishing Company, 1970.
  2. J. J. Duderstadt and L. J. Hamilton, Nuclear Reactor Analysis, John Wiley & Sons, New York, NY, USA, 1976.
  3. C. Gho, Reactor Physics Undergraduate Course Lecture Notes, Instituto Balseiro, 2006.
  4. G. G. Theler and F. J. Bonetto, “On the stability of the point reactor kinetics equations,” Nuclear Engineering and Design, vol. 240, no. 6, pp. 1443–1449, 2010. View at Publisher · View at Google Scholar · View at Scopus
  5. E. E. Lewis and W. F. Miller, Computational Methods of Neutron Transport, John Wiley & Sons, 1984.
  6. E. Masiello, “Analytical stability analysis of Coarse-Mesh finite difference method,” in Proceedings of the International Conference on the Physics of Reactors (PHYSOR '08), Nuclear Power: A Sustainable Resource, pp. 456–464, September 2008. View at Scopus
  7. M. L. Zerkle, Development of a polynomial nodal method with flux and current discontinuity factors [Ph.D. thesis], Massachusets Institute of Technology, 1992.
  8. J. I. Yoon and H. G. Joo, “Two-level coarse mesh finite difference formulation with multigroup source expansion nodal kernels,” Journal of Nuclear Science and Technology, vol. 45, no. 7, pp. 668–682, 2008. View at Publisher · View at Google Scholar · View at Scopus
  9. O. Mazzantini, M. Schivo, J. Di Césare, R. Garbero, M. Rivero, and G. Theler, “A coupled calculation suite for Atucha II operational transients analysis,” Science and Technology of Nuclear Installations, vol. 2011, Article ID 785304, 12 pages, 2011. View at Publisher · View at Google Scholar · View at Scopus
  10. Computational Benchmark Problem Comitee for the Mathematics and Computation Division of the American Nuclear Society, “Argonne Code Center: Benchmark problem book,” Tech. Rep. ANL-7416, Supplement 2, Argonne National Laboratory, 1977. View at Google Scholar
  11. A. F. Henry, Nuclear Reactor Analysis., MIT, Cambridge, UK, 1975.
  12. O. C. Zienkiewicz, R. L. Taylor, and J. Z. Zhu, The Finite Element Method: Its Basis and Fundamentals, vol. 1, Elsevier, 6th edition, 2005.
  13. G. Theler, Difusión de neutrones en mallas no estructuradas: comparación entre volúmenes y elementos finitos, Academic Monograph, Universidad de Buenos Aires, 2013.
  14. G. Theler, “Milonga: a free nuclear reactor core analysis code,” Available online, 2011.
  15. G. Theler, F. J. Bonetto, and A. Clausse, “Optimización de parametros en reactores de potencia: base de diseño del codigo neutrónico milonga,” in Reunion Anual de la Asociacion Argentina de Tecnologia Nuclear, XXXVII, 2010.
  16. C. Geuzaine and J.-F. Remacle, “Gmsh: a 3-D finite element mesh generator with built-in pre- and post-processing facilities,” International Journal for Numerical Methods in Engineering, vol. 79, no. 11, pp. 1309–1331, 2009. View at Publisher · View at Google Scholar · View at Scopus
  17. S. Balay, J. Brown, K. Buschelman et al., “PETSc users manual,” Tech. Rep. ANL-95/11-Revision 3.4, Argonne National Laboratory, 2013. View at Google Scholar
  18. S. Balay, W. D. Gropp, L. Curfman McInnes, and B. F. Smith, “Efficient management of parallelism in object oriented numerical software libraries,” in Modern Software Tools in Scientific Computing, E. Arge, A. M. Bruaset, and H. P. Langtangen, Eds., pp. 163–202, Birkhäuser, 1997. View at Google Scholar
  19. V. Hernandez, J. E. Roman, and V. Vidal, “SLEPC: a scalable and flexible toolkit for the solution of eigenvalue problems,” ACM Transactions on Mathematical Software, vol. 31, no. 3, pp. 351–362, 2005. View at Publisher · View at Google Scholar · View at Scopus
  20. M. Galassi, J. Davies, J. Theiler et al., GNU Scientific Library Reference Manual, 3rd edition, 2009.
  21. O. C. Zienkiewicz and R. L. Taylor, The Finite Element Method For Solid and Structural Mechanics, vol. 3, Elsevier, 6th edition, 2005.
  22. A. Imelda and K. Doddy, Evaluation of the IAEA 3-D PWR benchmark problem using NESTLE code, 2004.
  23. R. Mosteller, “Static benchmarking of the NESTLE advanced nodal code,” in Proceedings of the Joint International Conference on Mathematical Methods and Supercomputing for Nuclear Applications, vol. 2, pp. 1596–1605, 1997.
  24. G. Theler, F. J. Bonetto, and A. Clausse, “Solution of the 2D IAEA PWR Benchmark with the neutronic code milonga,” in Actas de la Reunión Anual de la Asociación Argentina de Tecnología Nuclear, XXXVIII, 2011.
  25. J. F. Remacle, F. Henrotte, T. Carrier-Baudouin et al., “A frontal delaunay quad mesh generator using the L norm,” International Journal For Numerical Methods in Engineering, vol. 94, no. 5, pp. 494–512, 2013. View at Google Scholar
  26. G. W. Stewart, “A Krylov-Schur algorithm for large eigenproblems,” SIAM Journal on Matrix Analysis and Applications, vol. 23, no. 3, pp. 601–614, 2002. View at Publisher · View at Google Scholar · View at Scopus
  27. J. L. Bentley, “Multidimensional binary search trees used for associative searching,” Communications of the ACM, vol. 18, no. 9, pp. 509–517, 1975. View at Publisher · View at Google Scholar · View at Scopus