Table of Contents Author Guidelines Submit a Manuscript
Science and Technology of Nuclear Installations
Volume 2013, Article ID 790206, 12 pages
Research Article

Presentation and Discussion of the UAM/Exercise I-1b: “Pin-Cell Burn-Up Benchmark” with the Hybrid Method

Department of Nuclear Engineering, Universidad Politécnica de Madrid, C/José Gutiérrez Abascal, 2, 28006 Madrid, Spain

Received 6 September 2012; Accepted 10 December 2012

Academic Editor: Kostadin Ivanov

Copyright © 2013 O. Cabellos. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. N. Avramova and K. N. Ivanov, “Verification, validation and uncertainty quantification in multi-physics modeling for nuclear reactor design and safety analysis,” Progress in Nuclear Energy, vol. 52, no. 7, pp. 601–614, 2010. View at Publisher · View at Google Scholar · View at Scopus
  2. ZZ-SCALE6. 0/COVA-44G, USCD1236/02 OECD-NEA Data Bank.
  3. B. T. Rearden et al., ORNL/TM-2005/39 Version 6, vol. I, Sect. C9.
  4. J. Leppänen and M. Pusa, “Burnup calculation capability in the PSG2/Serpent Monte Carlo reactor physics code,” in Proceedings of the International Conference on Mathematics, Computational Methods and Reactor Physics (M and C '09), pp. 1662–1673, Saratoga Springs, New York, NY, USA, May 2009. View at Scopus
  5. H. J. Park, H. J. Shim, and C. H. Kim, “Uncertainty propagation in monte carlo depletion analysis,” Nuclear Science and Engineering, vol. 167, no. 3, pp. 196–208, 2011. View at Google Scholar · View at Scopus
  6. M. Klein, L. Gallner, B. Krzykacz-Hausmann, A. Pautz, and W. Zwermann, “Influence of nuclear data uncertainties on reactor core calculations,” Kerntechnik, vol. 76, no. 3, pp. 174–178, 2011. View at Google Scholar · View at Scopus
  7. D. Rochman, A. J. Koning, S. C. van der Marck, A. Hogenbirk, and C. M. Sciolla, “Nuclear data uncertainty propagation: perturbation vs. Monte Carlo,” Annals of Nuclear Energy, vol. 38, no. 5, pp. 942–952, 2011. View at Publisher · View at Google Scholar · View at Scopus
  8. N. García-Herranz, O. Cabellos, J. Sanz, J. Juan, and J. C. Kuijper, “Propagation of statistical and nuclear data uncertainties in Monte Carlo burn-up calculations,” Annals of Nuclear Energy, vol. 35, no. 4, pp. 714–730, 2008. View at Publisher · View at Google Scholar · View at Scopus
  9. B. T. Rearden, “TSUNAMI sensitivity and uncertainty analysis capabilities in SCALE 5. no. 1,” Transactions of the American Nuclear Society, vol. 97, pp. 604–605, 2007. View at Google Scholar
  10. J. Sanz, O. Cabellos, and N. García-Herranz, ACAB-2008:Activation Code V2008, NEA-1839, OECD/NEA Data Bank, 2008.
  11. G. Chiba, K. Okumura, A. Oizumi, and M. Saito, “Sensitivity analysis of fission product concentrations for light water reactor burned fuel,” Journal of Nuclear Science and Technology, vol. 47, no. 7, pp. 652–660, 2010. View at Publisher · View at Google Scholar · View at Scopus