Table of Contents Author Guidelines Submit a Manuscript
Science and Technology of Nuclear Installations
Volume 2013 (2013), Article ID 932546, 9 pages
http://dx.doi.org/10.1155/2013/932546
Research Article

The Fission-Based  99Mo Production Process ROMOL-99 and Its Application to PINSTECH Islamabad

1GSG International GmbH, Eichenstraße 12, 8808 Pfäffikon, Switzerland
2IAF Radioökologie GmbH, Karpatenstraße 20, 01326 Dresden, Germany
3Foundation University Islamabad, 44000 Islamabad, Pakistan
4Isotope Production Division, Pakistan Institute of Nuclear Science and Technology (PINSTECH), P.O. Nilore Islamabad, 45650 Nilore, Pakistan

Received 27 June 2013; Accepted 15 August 2013

Academic Editor: Pablo Cristini

Copyright © 2013 Rudolf Muenze et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. L. G. Stang, BNL 864 (T-347), 1964.
  2. D. Novotny and G. Wagner, “Procedure of small scale production of Mo-99 on the basis of irradiated natural uranium targets,” in Proceedings of the IAEA Consultancy Meeting on Small Scale Production of Fission Mo-99 for Use in Tc-99m Generators, Vienna, Austria, July 2003.
  3. R. Muenze, O. Hladik, G. Bernhard, W. Boessert, and R. Schwarzbach, “Large scale production of fission 99Mo by using fuel elements of a research reactor as starting material,” International Journal of Applied Radiation and Isotopes, vol. 35, no. 8, pp. 749–754, 1984. View at Publisher · View at Google Scholar · View at Scopus
  4. O. Hladik, G. Bernhardt, W. Boessert, and R. Muenze, “Production of fission 99Mo by processing irradiated natural uranium targets,” Fission Molybdenum for Medical Use, IAEA-TECDOC-515, IAEA, Vienna, Austria, 1989.
  5. G. J. Beyer, R. Muenze, D. Novotny, A. Mushtaq, and M. Jehangir, “ROMOL-99—a new innovative small-scale LEU-based Mo-99 production process,” in Proceedings of the 6th International Conference on Isotopes, Seoul, Republic of Korea, May 2008.
  6. G. Beyer, R. Muenze, D. Novotny, M. Ahmad, and M. Jehangir, “S8-4 ROMOL-99: a new innovative small-scale LEU-based Mo-99 production process,” in Proceedings of the International Meeting on Reduced Enrichment for Research and Test Reactors (RERTR '08), Washington, DC, USA, October 2008.
  7. G. Beyer, R. Muenze, D. Novotny, M. Ahmad, and M. Jehangir, “S13-P6 ROMOL-99: a new innovative small-scale LEU-based Mo-99 production process,” in Proceedings of the 31th International Meeting on Reduced Enrichment for Research and Test Reactors (RERTR '09), Beijing, China, November 2009.
  8. A. Mushtaq, “Specifications and qualification of uranium/aluminum alloy plate target for the production of fission molybdenum-99,” Nuclear Engineering and Design, vol. 241, no. 1, pp. 163–167, 2011. View at Publisher · View at Google Scholar · View at Scopus
  9. NuDat 2.5, http://www.nndc.bnl.gov/nudat2/.
  10. A. A. Sameh and H. J. Ache, “Production techniques for fission molybdenum -99,” Radiochimika Acta, vol. 41, pp. 65–72, 1987. View at Google Scholar
  11. M. V. Wilkinson, A. V. Mondino, and A. C. Manzini, “Separation of iodine produced from fission using silver-coated alumina,” Journal of Radioanalytical and Nuclear Chemistry, vol. 256, no. 3, pp. 413–415, 2003. View at Publisher · View at Google Scholar · View at Scopus
  12. A. Mushtaq, S. Pervez, S. Hussain et al., “Evaluation of Pakgen 99mTc generators loaded with indigenous fission 99Mo,” Radiochim Acta, vol. 100, pp. 793–800, 2012. View at Google Scholar