Table of Contents Author Guidelines Submit a Manuscript
Science and Technology of Nuclear Installations
Volume 2014 (2014), Article ID 185950, 19 pages
http://dx.doi.org/10.1155/2014/185950
Research Article

Validation of NEPTUNE-CFD Two-Phase Flow Models Using Experimental Data

1Laboratoire d'Etudes et de Simulation des Systèmes, CEA Cadarache, CAD/DEN/DER/SESI, Bât. 212, 13108 St. Paul Lez Durance Cedex, France
2Karlsruhe Institute of Technology, Institute for Neutron Physics and Reactor Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
3Mechanical Engineering and Construction Department, Jaume I University, Avenida de Vicent Sos Baynat, s/n, 12071 Castellon, Spain

Received 16 February 2014; Accepted 9 April 2014; Published 30 June 2014

Academic Editor: Eugenijus Ušpuras

Copyright © 2014 Jorge Pérez Mañes et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. Guelfi, D. Bestion, M. Boucker et al., “NEPTUNE: a new software platform for advanced nuclear thermal hydraulics,” Nuclear Science and Engineering, vol. 156, no. 3, pp. 281–324, 2007. View at Publisher · View at Google Scholar · View at Scopus
  2. J. Lavieville, E. Quemarais, and M. A. M. L. Boucker, “Neptune-CFD user guide,” 2010.
  3. J. Lavieville, E. Quemarais, M. Boucker, and S. Mimouni, Neptune-CFD V1.0 Theory Manual, 2006.
  4. M. Ishii and N. Zuber, “Drag coefficient and relative velocity in bubbly, dropet or particulate flows,” AIChE Journal, vol. 25, no. 5, pp. 843–855, 1979. View at Publisher · View at Google Scholar · View at Scopus
  5. N. Zuber, “On the dispersed two-phase flow in the laminar flow regime,” Chemical Engineering Science, vol. 19, no. 11, pp. 897–917, 1964. View at Publisher · View at Google Scholar · View at Scopus
  6. M. Ishii, “Two-fluid model for two-phase flow,” Multiphase Science and Technology, vol. 5, no. 1–4, pp. 1–63, 1990. View at Google Scholar
  7. T. R. Auton, “The lift force on a spherical body in a rotational flow,” Journal of Fluid Mechanics, vol. 183, pp. 199–218, 1987. View at Publisher · View at Google Scholar · View at Scopus
  8. A. Tomiyama, H. Tamai, I. Zun, and S. Hosokawa, “Transverse migration of single bubbles in simple shear flows,” Chemical Engineering Science, vol. 57, no. 11, pp. 1849–1858, 2002. View at Publisher · View at Google Scholar · View at Scopus
  9. M. Lance and M. Lopez de Bertodano, “Phase distribution phenomena and wall effects in bubbly two-phase flows,” Multiphase Science and Technology, vol. 8, no. 1–4, pp. 69–123, 1994. View at Google Scholar
  10. W. Yao and C. Morel, “Volumetric interfacial area prediction in upward bubbly two-phase flow,” International Journal of Heat and Mass Transfer, vol. 47, no. 2, pp. 307–328, 2004. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at Scopus
  11. Q. Wu, S. Kim, M. Ishii, and S. G. Beus, “One-group interfacial area transport in vertical bubbly flow,” International Journal of Heat and Mass Transfer, vol. 41, no. 8-9, pp. 1103–1112, 1998. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at Scopus
  12. Y. Hsu, “On the size range of acting nucleation cavities on a heating surface,” Journal of Heat Transfer, vol. 3, no. 84, pp. 207–216, 1962. View at Google Scholar
  13. N. Kurul and M. Z. Podowski, “Multi dimensional effects in forced convection subcooled boiling,” in Proceedings of the 9th International Heat Transfer Conference, p. 21, Jerulasem, Israel, 1990.
  14. H. C. Ünal, “Maximum bubble diameter, maximum bubble-growth time and bubble-growth rate during the subcooled nucleate flow boiling of water up to 17.7 MN/m2,” International Journal of Heat and Mass Transfer, vol. 19, no. 6, pp. 643–649, 1976. View at Publisher · View at Google Scholar · View at Scopus
  15. Y. Egorov and F. Menter, “Experimental Implementation of the RPI wall boiling model CFX-5.6,” Technical Report ANSYS/TR-04-10, ANSYS GmbH, 2004. View at Google Scholar
  16. J. Weisman and B. S. Pei, “Prediction of critical heat flux in flow boiling at low qualities,” International Journal of Heat and Mass Transfer, vol. 26, no. 10, pp. 1463–1477, 1983. View at Publisher · View at Google Scholar · View at Scopus
  17. A. Rubin, A. Schoedel, M. Avramova et al., “OECD/NRC Benchmark based on NUPEC PWR subchannel and bundle test (PSBT),” NEA-1849 ZZ-PSBT, 2010.
  18. D. Neykov, F. Aydogan, L. Hochreiter et al., “NUPEC BWR full-size fine-mesh bundle test (BFBT) Benchmark Volume I: specifications,” Nuclear Science NEA/NSC/DOC, vol. 92, no. 64, 2005. View at Google Scholar
  19. Anon, Release on the IAPWS Industrial Formulation 1997 for the Thermodynamic Properties of Water and Steam, The International Association for the Properties of Water and Steam, Erlangen, Germany, 1997.
  20. E. Krepper and R. Rzehak, “CFD analysis of a void distribution benchmark of the NUPEC PSBT tests: Model calibration and influence of turbulence modelling,” Science and Technology of Nuclear Installations, vol. 2012, Article ID 939561, 10 pages, 2012. View at Publisher · View at Google Scholar · View at Scopus
  21. C. Péniguel and A. I. Rupp, SYRTHES 3.4—Manuel Théorique, EDF R&D, Paris, France, 2004.
  22. M. Glück, “Validation of the sub-channel code F-COBRA-TF. Part II. Recalculation of void measurements,” Nuclear Engineering and Design, vol. 238, no. 9, pp. 2317–2327, 2008. View at Publisher · View at Google Scholar · View at Scopus