Table of Contents Author Guidelines Submit a Manuscript
Science and Technology of Nuclear Installations
Volume 2015, Article ID 892502, 18 pages
http://dx.doi.org/10.1155/2015/892502
Research Article

Probabilistic Dynamics for Integrated Analysis of Accident Sequences considering Uncertain Events

Lietuvos Energetikos Institutas, Breslaujos 3, LT-44403 Kaunas, Lithuania

Received 16 January 2015; Revised 14 April 2015; Accepted 16 April 2015

Academic Editor: Francesco Di Maio

Copyright © 2015 Robertas Alzbutas. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. Devooght, “Dynamic reliability,” Advances in Nuclear Sciences and Technology, vol. 25, pp. 215–278, 1997. View at Google Scholar
  2. J. Devooght and C. Smidts, “Probabilistic dynamics as a tool for dynamic PSA,” Reliability Engineering and System Safety, vol. 52, no. 3, pp. 185–196, 1996. View at Publisher · View at Google Scholar · View at Scopus
  3. J. M. Izquierdo, E. Melendez, and J. Devooght, “Relationship between probabilistic dynamics and event trees,” Reliability Engineering and System Safety, vol. 52, no. 3, pp. 197–209, 1996. View at Publisher · View at Google Scholar · View at Scopus
  4. P. E. Labeau, C. Smidts, and S. Swaminathan, “Dynamic reliability: towards an integrated platform for probabilistic risk assessment,” Reliability Engineering and System Safety, vol. 68, no. 3, pp. 219–254, 2000. View at Publisher · View at Google Scholar · View at Scopus
  5. R. Alzbutas and V. Janilionis, “The simulation of dynamic systems using combined modelling,” Mathematical Modelling and Analysis, vol. 5, no. 1, pp. 7–17, 2000. View at Google Scholar · View at Zentralblatt MATH · View at Scopus
  6. H. Pranevicius, “The use of PLA for creation of simulation models,” in Proceedings of the Summer Computer Simulation Conference (SCSC '04), pp. 179–184, San Jose, Calif, USA, 2004.
  7. H. Pranevicius, “Formal specification and analysis of distributed systems,” Journal of Intelligent Manufacturing, vol. 9, no. 6, pp. 559–569, 1998. View at Publisher · View at Google Scholar · View at Scopus
  8. R. Alzbutas and V. Janilionis, “Determination and simulation of stimulated dynamics,” Science Works of Lithuanian Mathematicians Association, vol. 46, pp. 321–327, 2006. View at Google Scholar
  9. R. Alzbutas and P. E. Labeau, “Dynamic reliability and uncertainty analysis of a severe accident with randomly delayed events,” in Advances in Safety, Reliability and Risk Management: Proceedings of ESREL '2011, Troyes, France, September 18–22, 2011, pp. 309–317, CRC Press/Taylor Francis Group, London, UK, 2012. View at Google Scholar
  10. IAEA, Development and Application of Level 1 Probabilistic Safety Assessment for Nuclear Power Plants, IAEA Safety Standards No. SSG-3, Specific Safety Guide, International Atomic Energy Agency, Vienna International Centre, Vienna, Austria, 2010.
  11. IAEA, Development and Application of Level 2 Probabilistic Safety Assessment for Nuclear Power Plants, IAEA Safety Standards No. SSG-4, Specific Safety Guide, International Atomic Energy Agency, Vienna International Centre, Vienna, Austria, 2010.
  12. A. Hakobyan, T. Aldemir, R. Denning et al., “Dynamic generation of accident progression event trees,” Nuclear Engineering and Design, vol. 238, no. 12, pp. 3457–3467, 2008. View at Publisher · View at Google Scholar · View at Scopus
  13. M. Kloos and J. Peschke, “MCDET: a probabilistic dynamics method combining Monte Carlo simulation with the discrete dynamic event tree approach,” Nuclear Science and Engineering, vol. 153, no. 2, pp. 137–156, 2006. View at Google Scholar · View at Scopus
  14. P. E. Labeau and J. M. Izquierdo, “Modeling PSA problems-I: the stimulus-driven theory of probabilistic dynamics,” Nuclear Science and Engineering, vol. 150, no. 2, pp. 115–139, 2005. View at Google Scholar · View at Scopus
  15. G. Espinosa-Paredes, R. Camargo-Camargo, and A. Nuñez-Carrera, “Severe accident simulation of the laguna verde nuclear power plant,” Science and Technology of Nuclear Installations, vol. 2012, Article ID 209420, 11 pages, 2012. View at Publisher · View at Google Scholar · View at Scopus
  16. R. Alzbutas, J. M. Izquierdo, and P. E. Labeau, “Application of stimulated dynamics to probabilistic safety assessment,” in Proceedings of the European Safety and Reliability Conference (ESREL '07), vol. 2, pp. 1027–1034, 2007.
  17. R. Alzbutas and V. Janilionis, “Aggregate simulation of stimulated dynamics for reliability analysis,” in Proceedings of the European Conference on Safety and Reliability (ESREL '07), vol. 2, pp. 1035–1041, 2007.
  18. J. M. Izquierdo and P.-E. Labeau, “The stimulus-driven theory of probabilistic dynamics as a framework for probabilistic safety assessment,” in Probabilistic Safety Assessment and Management: PSAM 7—ESREL '04 June 14–18, 2004, Berlin, Germany, Volume 6, pp. 687–693, Springer, London, UK, 2004. View at Publisher · View at Google Scholar
  19. P. E. Labeau, “Accident sequence simulation methods based on dynamic reliability concepts,” in Proceedings of the 1st European Review Meeting on Severe Accident Research (ERMSAR '05), Aix-en-Provence, France, 2005.
  20. H. Glaeser, “GRS method for uncertainty and sensitivity evaluation of code results and applications,” Science and Technology of Nuclear Installations, vol. 2008, Article ID 798901, 7 pages, 2008. View at Publisher · View at Google Scholar · View at Scopus
  21. E. Hofer, “Sensitivity analysis in the context of uncertainty analysis for computationally intensive models,” Computer Physics Communications, vol. 117, no. 1, pp. 21–34, 1999. View at Publisher · View at Google Scholar · View at Scopus
  22. Z. Šimić, B. Zerger, and R. Banov, “Uncertainty analysis of method-based operating event groups ranking,” Science and Technology of Nuclear Installations, vol. 2014, Article ID 324710, 12 pages, 2014. View at Publisher · View at Google Scholar
  23. A. Saltelli, S. Tarantola, F. Campolongo, and M. Ratto, Sensitivity Analysis in Practice: A Guide to Assessing Scientific Models, John Wiley & Sons, 2004.
  24. G. Lorenzo, P. Zanocco, M. Giménez et al., “Assessment of an isolation condenser of an integral reactor in view of uncertainties in engineering parameters,” Science and Technology of Nuclear Installations, vol. 2011, Article ID 827354, 9 pages, 2011. View at Publisher · View at Google Scholar · View at Scopus
  25. B. Krzykacz, E. Hofer, and M. Kloos, “A software system for uncertainty and sensitivity analysis of results from computer models,” in Proceedings of the International Conference on Probabilistic Safety Assessment and Management (PSAM-II '94), vol. 2, pp. 20–25, San Diego, Calif, USA, March 1994.
  26. E. Raimond and T. Durin, “Comparison between classical and dynamic reliability approaches. Specification and results of a benchmark exercise,” in Proceedings of the European Review Meeting on Severe Accident Research (ERMSAR '07), Forschungszentrum Karlsruhe GmbH, 2007.
  27. B. Chaumont, “Overview of SARNET progress on PSA2 topic,” in Proceedings of the 1st European Review Meeting on Severe Accident Research (ERMSAR '05), Aix-en-Provence, France, November 2005.