Research Article  Open Access
Hongyu Chen, Hong Li, Chuan Li, Jianzhu Cao, Chao Fang, "Diffusion Behaviors of Hydrogen Isotopes in Incoloy 800H: A FirstPrinciples Study", Science and Technology of Nuclear Installations, vol. 2017, Article ID 4038021, 6 pages, 2017. https://doi.org/10.1155/2017/4038021
Diffusion Behaviors of Hydrogen Isotopes in Incoloy 800H: A FirstPrinciples Study
Abstract
Incoloy 800H is one of the main stainless steel materials used in steam generators with High Temperature Reactor Pebblebed Modules (HTRPM). In this study, the diffusion behaviors of hydrogen isotopes in Incoloy 800H were investigated with firstprinciple calculations. Numerical results reveal that the starting and ending positions of the diffusion process are the two adjacent and most stable octahedral sites surrounded by Fe atoms and Ni atoms, and the diffusion follows an indirect path via the metastable tetrahedral sites and octahedral sites surrounded by Fe atoms and Cr atoms. The diffusion activation energies of hydrogen (H), deuterium (D), and tritium (T) in Incoloy 800H are investigated by firstprinciples calculations with the same approximate value of eV; the diffusion coefficient frequency factors are also obtained with values of , , and (m^{2}/s) for H, D, and T, respectively. Furthermore, the theoretical results are compared with the experimental data, and it is found that both are in agreement with each other. These results are very helpful for understanding the diffusion behaviors of hydrogen isotopes in Incoloy 800H and can be used to guide the tritium source term analysis of secondary circuits in HTRPM, which are first studied from a microperspective.
1. Introduction
Tritium is one of the most important radionuclides in reactors owing to its very harmful βradiation and long halflife. Although the βparticle produced by the decay of tritium is easily absorbed and blocked by the skin, tritium oxide (HTO, DTO, or T_{2}O) can be inhaled and can combine with organic matter, resulting in internal irradiation, which is very harmful to the human body. In the primary circuit of High Temperature Reactor Pebblebed Modules (HTRPM), tritium could be generated in two ways: ternary fission and neutron reactions [1]. Additionally, the experimental results have indicated that tritium diffusion is a serious issue for High Temperature Gascooled Reactors (HTGR) because tritium could easily traverse metal and permeate from the primary circuit into the secondary circuit under high temperature conditions [2]. It is reported that, at the end of the 20year lifetime of a 10 MW High Temperature Gascooled Test Reactor (HTR10), the radioactivity of ^{3}H in the primary circuit will have accumulated to 5.7 × 10^{9} Bq, and it is estimated that the concentration of ^{3}H in the secondary circuit of a 1000 MWe HTGR could be 1.85 × 10^{5} Bq/L in the equilibrium state [1, 3]. The steam generator pipes are the main boundary for tritium permeation, and Incoloy 800H is a major material of those pipes in HTRPM, which makes it essential to understand the diffusion mechanism of tritium in Incoloy 800H.
In recent years, a number of theoretical studies based on firstprinciples calculations of diffusion mechanisms and behaviors of gas atoms in metal have been published [4–9]. Wimmer et al. have predicted the temperaturedependent diffusion coefficients of interstitial hydrogen, deuterium, and tritium atoms in nickel [4]. Yang et al. studied the diffusion behaviors of C, N, and O atoms in V metal [5]. Liu et al. have researched the diffusion activation energies of C, N, and O in αFe [6]. Apart from these theoretical studies, many experimental measurements on diffusion have been performed, proving that the firstprinciple calculation is a powerful research tool in materials science [10–14].
However, there are few studies on the diffusion of gas atoms in Incoloy 800H and other alloy materials. In this study, the diffusion mechanism and behavior of hydrogen isotopes (H, D, and T) in Incoloy 800H were investigated with firstprinciple calculations using density functional theory (DFT) [15]. In addition, the numerical results of the calculation, including the diffusion activation energies and the frequency factors of diffusion coefficients, were compared with the experimental results of hydrogen and deuterium obtained by our team. The similarity between these results shows that the study is reliable and sometimes, in nuclear industry, the firstprinciple calculation could take the place of complicated experiments in rigorous conditions, saving costs and resources.
2. Method of Calculation and Experiment
2.1. The Construction of Incoloy 800H Model
The calculation was performed based on DFT as implemented in the Vienna Ab initio Simulation Package (VSAP) with the projector augmented wave (PAW) potential method [16–19]. The exchange and correlation effects are described by the generalized gradient approximation (GGA) in the PerdewBurkeErnzerhof (PBE) form [20]. To carry out this study, the microstructure of Incoloy 800H has to be determined in the first step.
Incoloy 800H is an austenitic alloy with a facecentered cubic structure. Its main components are Fe, Cr, and Ni with the mass fractions of approximately 46%, 32%, and 21%, respectively [21]. The numerical ratio of these three elements can be easily calculated as being approximately 6 : 4 : 3. This ratio is similar to that obtained on replacing two iron atoms by one chromium atom and one nickel atom in each ideal primitive cell of facecentered cubic iron (Figure 1(a)), and, therefore, the ratio can be simplified to 2 : 1 : 1. Finally, the system is constructed using a supercell containing 16 Fe atoms, 8 Cr atoms, and 8 Ni atoms (Figure 1(b)). To check the convergence of the activation energies, we have also considered a supercell containing 72 host atoms and one hydrogen atom. The lattice constant was optimized to 3.486 Å, the calculation was performed by using a 5 × 5 × 5 kpoint mesh, and the plane wave cutoff was 500 eV.
(a)
(b)
2.2. Diffusion Activation Energy and Diffusion Coefficient
The most common diffusion mechanism of hydrogen isotopes in crystalline solids is via the vacancies composed of lattice atoms [8]. There are two types of conventional vacancy trap sites in facecentered cubic cells: octahedral sites and tetrahedral sites. In addition, owing to the differences in vicinal atoms, the octahedral sites fall into three types, while there is only one type of tetrahedral site (Figure 2).
(a)
(b)
(c)
(d)
The general form of the diffusion coefficient is given bywhere is the temperature independent frequency factor, is the Boltzmann constant, and T is the temperature. is the diffusion activation energy, that is, the highest energy barrier for the impurity atoms to diffuse from one most stable vacancy to another [5].
According to the transition state theory, the transition rate of atoms in solids is given by [22]where is the vibrational frequency of the impurity. Therefore, the diffusion coefficient can be expressed as [23]where is the length of every transition. Using Zener and Wert’s theory, the vibrational frequency can be defined as [24, 25]where is the mass of the impurity. Substituting (3) and (4) into (1), and can be written as
It is clear from the above derivation that the main challenge of the study is to determine the diffusion path and quantify the parameters and .
3. Results and Discussion
3.1. Diffusion Activation Energy
To confirm the physical diffusion path, the most stable vacancy site should be found in the first step. The system energy of H located in the three octahedral sites and the tetrahedral site was calculated (Table 1).

In this calculation with VASP, the projector augmented wave (PAW) pseudopotential was employed to describe the electronion interaction while neutron effects and mass effects were not involved. Therefore, the energies of H, D, and T should be the same; this is confirmed by our calculation. This is usually well justified as the barrier for an atomic jump is determined by the electronic interaction, which is identical for two isotopes of the same element, and not by the masses of the nuclei [25].
It is found that the most stable site is the OFeCr site where equals to −251.937 eV, lower than the Te site with a supercell by 0.616 eV. The supercell gives the same order of of the four sites and an essentially same energy difference of 0.615 eV. Therefore, the impurity atoms must transit through an OFeNi site or an OFeCrNi site when they complete a whole diffusion process from one OFeCr site to another. Owing to the lower , the OFeNi site is considered as the midpoint. As the starting, end, and midpoints were confirmed, there are two possible diffusion paths in the model, as illustrated in Figure 3. In path A, a H atom transits from O_{1} to O_{2} in a straight line; in path B, the impurity atom jumps by a broken line, passing by the Te position. To compare the two diffusion paths, the “Transition State Search” method, nudged elastic band calculation [26], was used to search for the transition state.
As shown in Figure 4, the highest energy barriers (diffusion barriers) of path A and B are 1.152 eV and 0.757 eV, respectively. It is obvious that impurity atoms tend to diffuse through path B owing to the lower energy barrier, and its diffusion activation energy is 0.757 eV. The resulting energy curves also show that the energy at the tetrahedral sites is a local minimum of path B. Thus, the diffusion atoms would pass through the metastable tetrahedral sites acting as a transition state.
(a)
(b)
An experiment testing hydrogen diffusion performance at mediumhigh temperatures by gasphase hydrogen permeation methods was also conducted.
As it is illustrated in Figure 5, an Incoloy 800H sample tube was maintained under high vacuum and several experimental temperatures. Hydrogen flowed from its source to inside the tube and then diffused outwards driven by the concentration difference. A quadrupole mass spectrometer was used to measure hydrogen concentration.
According to the measured hydrogen permeation curve, the temperaturedependent diffusion coefficient was calculated by the lag time method:where d is the thickness of the sample tube and t is the characteristic time, that is, the time for the hydrogen permeation to reach 0.617 times the saturated permeability.
The experimental data can be fitted with the logarithmic form of the Arrhenius relation, and the activation energy results are listed in Table 2 with their corresponding theoretical values. Considering the parameter difference between experimental and theoretical approach (such as temperature, pressure, gas concentration, and the structural defects of experimental material), this deviation is acceptable. In addition, since the values of and are similar to each other in experiment, it is reasonable to infer that the value of would also be close to and .

3.2. Diffusion Coefficients
As is shown in Figure 4, the length of every transition is 2.584 Å (O_{1} to O_{2}). Substituting and to (5), of H, D, and T are shown in Table 3.

Finally, the complete diffusion coefficients of H, D, and T can be written as
It can be seen that the diffusion coefficients of isotopes decrease with the increasing mass. This law is consistent with the experimental results (Figure 6). The explanation of this behavior is that the lower vibrational frequency of heavier isotopes reduces the diffusion rate linearly as shown in (3).
4. Conclusion
In this study, a firstprinciples calculation was performed to study the diffusion behavior of tritium and its isotopes in Incoloy 800H. Three octahedral sites and one tetrahedral site were considered, and the most stable vacancy was found to be the octahedral site surrounded by Fe atoms and Ni atoms. It was found that the diffusion of impurity atoms occurred through an indirect path via the metastable tetrahedral site and the octahedral site surrounded by Fe atoms and Cr atoms. The numerical results show that the diffusion activation energies of the three isotopes have the same value of approximately 0.757 eV, and the diffusion coefficients are also estimated; and , , and (m^{2}/s) for H, D, and T, respectively. Owing to the limitations related to experimental conditions, there are some deviations between the experimental and theoretical results.
In addition, the diffusion coefficients of tritium in Incoloy 800H and other alloys are still very difficult to obtain experimentally. However, the firstprinciples calculation provides an effective way to investigate the diffusion mechanism and related parameters. These theoretical results can be used for material selection and nuclear safety evaluation in HTRPM.
Conflicts of Interest
The authors declare that they have no conflicts of interest.
Acknowledgments
This work was supported by the National Science and Technology Major Project of the Ministry of Science and Technology of China (Grant no. ZX06901).
References
 P. Ye and X. Y. Yang, “Source and effect of Tritium from indirect closed Brayton cycle with HighTemperature GasCooled Reactor,” Atomic Energy Science and Technology, vol. 43, pp. 367–370, 2009. View at: Google Scholar
 M. A. Fütterer, E. D'Agata, and X. Raepsaet, “Is tritium an issue for high temperature reactors?” Nuclear Engineering and Design, vol. 306, pp. 160–169, 2016. View at: Publisher Site  Google Scholar
 L. Yuanzhong and C. Jianzhu, “Fission product release and its environment impact for normal reactor operations and for relevant accidents,” Nuclear Engineering and Design, vol. 218, no. 1–3, pp. 81–90, 2002. View at: Publisher Site  Google Scholar
 E. Wimmer, W. Wolf, J. Sticht et al., “Temperaturedependent diffusion coefficients from ab initio computations: Hydrogen, deuterium, and tritium in nickel,” Physical Review B: Condensed Matter and Materials Physics, vol. 77, no. 13, Article ID 134305, 2008. View at: Publisher Site  Google Scholar
 B. Yang, L. G. Wang, Y. Yi, E. Z. Wang, and L. X. Peng, “Firstprinciples calculations of the diffusion behaviors of C, N and O atoms in V metal,” Acta Physica Sinica, vol. 64, no. 2, pp. 356–361, 2015. View at: Google Scholar
 L. F. Liu, S. Q. Zhou, Y. T. Huang, and A. R. Zhou, “Computation of diffusion activation energies of C, N and O in aFe,” Materials Review, vol. 22, no. 8, pp. 120–122, 2008. View at: Google Scholar
 Y. Lu and P. Zhang, “Firstprinciples study of temperaturedependent diffusion coefficients: Hydrogen, deuterium, and tritium in αTi,” Journal of Applied Physics, vol. 113, no. 19, Article ID 193502, 2013. View at: Publisher Site  Google Scholar
 M. Mantina, Y. Wang, R. Arroyave, L. Q. Chen, Z. K. Liu, and C. Wolverton, “Firstprinciples calculation of selfdiffusion coefficients,” Physical Review Letters, vol. 100, no. 21, Article ID 215901, 2008. View at: Publisher Site  Google Scholar
 M. Mantina, Y. Wang, L. Q. Chen, Z. K. Liu, and C. Wolverton, “First principles impurity diffusion coefficients,” Acta Materialia, vol. 57, no. 14, pp. 4102–4108, 2009. View at: Publisher Site  Google Scholar
 L. Katz, M. Guinan, and R. J. Borg, “Diffusion of H2, D2, and T2 in singlecrystal Ni and Cu,” Physical Review B: Condensed Matter and Materials Physics, vol. 4, no. 2, pp. 330–341, 1971. View at: Publisher Site  Google Scholar
 F. J. M. Boratto and R. E. ReedHill, “Oxygen and nitrogen diffusion in vanadium,” Scripta Materialia, vol. 11, no. 12, pp. 1107–1111, 1977. View at: Publisher Site  Google Scholar
 T. S. Lundy and J. F. Murdock, “Diffusion of Al26 and Mn54 in Aluminum,” Journal of Applied Physics, vol. 33, no. 5, pp. 1671–1673, 1962. View at: Publisher Site  Google Scholar
 S. J. Rothman, N. L. Peterson, L. J. Nowicki, and L. C. Robinson, “Tracer diffusion of magnesium in aluminum single crystals,” Physica Status Solidi (b) – Basic Solid State Physics, vol. 63, no. 1, pp. K29–K33, 1974. View at: Publisher Site  Google Scholar
 T. Tanabe, S. Imoto, and Y. Miyata, “Hydrogen Permeation through Incoloy800,” Journal of Nuclear Science and Technology, vol. 16, no. 4, pp. 301302, 1979. View at: Publisher Site  Google Scholar
 W. Kohn and L. J. Sham, “Selfconsistent equations including exchange and correlation effects,” Physical Review A, vol. 140, no. 4A, pp. A1133–A1138, 1965. View at: Publisher Site  Google Scholar
 G. Kresse and J. Furthmüller, “Efficiency of abinitio total energy calculations for metals and semiconductors using a planewave basis set,” Computational Materials Science, vol. 6, no. 1, pp. 15–50, 1996. View at: Publisher Site  Google Scholar
 G. Kresse and J. Furthmüller, “Efficient iterative schemes for ab initio totalenergy calculations using a planewave basis set,” Physical Review B: Condensed Matter and Materials Physics, vol. 54, no. 16, pp. 11169–11186, 1996. View at: Publisher Site  Google Scholar
 G. Kresse and J. Hafner, “Ab initio molecular dynamics for liquid metals,” Physical Review B: Condensed Matter and Materials Physics, vol. 47, no. 1, pp. 558–561, 1993. View at: Publisher Site  Google Scholar
 G. Kresse and D. Joubert, “From ultrasoft pseudopotentials to the projector augmentedwave method,” Physical Review B: Condensed Matter and Materials Physics, vol. 59, no. 3, pp. 1758–1775, 1999. View at: Publisher Site  Google Scholar
 J. P. Perdew, K. Burke, and M. Ernzerhof, “Generalized gradient approximation made simple,” Physical Review Letters, vol. 77, no. 18, pp. 3865–3868, 1996. View at: Publisher Site  Google Scholar
 L. Y. Wang, “Compositions and structure feature of an Incoloy 800H alloy,” Special Steel, vol. 15, no. 1, pp. 41–44, 1994. View at: Google Scholar
 G. H. Vineyard, “Frequency factors and isotope effects in solid state rate processes,” Journal of Physics and Chemistry of Solids, vol. 3, no. 12, pp. 121–127, 1957. View at: Publisher Site  Google Scholar
 R. Kutner, “Chemical diffusion in the lattice gas of noninteracting particles,” Physics Letters A, vol. 81, no. 4, pp. 239240, 1981. View at: Publisher Site  Google Scholar
 C. Zener and C. Wert, “Interstitial atomic diffusion coefficients,” Physical Review, vol. 76, no. 8, pp. 1169–1175, 1949. View at: Publisher Site  Google Scholar
 C. A. Wert, “Diffusion coefficient of C in αiron,” Physical Review, vol. 79, no. 4, pp. 601–605, 1950. View at: Publisher Site  Google Scholar
 G. Henkelman and H. Jónsson, “Improved tangent estimate in the nudged elastic band method for finding minimum energy paths and saddle points,” The Journal of Chemical Physics, vol. 113, no. 22, pp. 9978–9985, 2000. View at: Publisher Site  Google Scholar
Copyright
Copyright © 2017 Hongyu Chen et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.