Research Article

Development and Verification of a Transient Analysis Tool for Reactor System Using Supercritical CO2 Brayton Cycle as Power Conversion System

Table 1

Overview of current study on S-CO2 Brayton cycle study working as power conversion system on nuclear applications.

Concept Name-MMRSC-GFR-KALIMER-600STAR-LMSSTAR

Developing-KAISTSNLMITKAERIArgonne National LaboratoryArgonne National Laboratory
Institution

Brayton cycle-directdirectdirectindirectindirectindirect
coupled method

Core Partthermal power (MW)36.220024001528.940045
Pressure (MPa)2020200.10.10.1
Fuel typeUC fuelUO2UO2BeOU-TRU-10%ZrTRU-N Enriched to N15Nitride fuel
Cladding typeStainless steelHigh NiODS MA956Mod.HT9Co-extruded-
Stainless steelSi-enhanced
F/M stainless
steel with F/M
substrate
Core outlet temperature550650650545.3578565.8
Mass flow rate (kg/s)180920117087731.3197082125
CoolantCO2CO2CO2SodiumPbPb

Power Conversion SystemBrayton cycle typesimple cycleno specific designrecompression cyclerecompression cyclerecompression cyclerecompression cycle
Cycle mass flow rate
(kg/s)
180-29278076.62276239.3
T/P of compressor
Inlet (°C/MPa)
60.8/8.0-32/7.6931.25/7.431.25/7.431.25/7.4
T/P of compressor outlet (°C/MPa)142.2/20.0-60.9/2084.8/20.085/20.084.9/20.0
T/P of recompression compressor inlet
(°C/MPa)
--70.9/7.7191.2/7.4686.3/7.40590.9/7.401
T/P of recompression compressor outlet
(°C/MPa)
--159.1/20.0189.4/19.98183.8/19.98189.8/20
T/P of turbine inlet
(°C/MPa)
550/19.93-650/19.45508.0/19.74540.0/19.88541.4/19.99
T/P of turbine outlet (°C/MPa)440.75/8.16-529.9/7.93394.2/7.6426.9/7.713420.1/7.435

Reference-[7][6][4][8][9][10]