Shock and Vibration

Shock and Vibration / 2002 / Article
Special Issue

COBEM 2001

View this Special Issue

Open Access

Volume 9 |Article ID 862159 | https://doi.org/10.1155/2002/862159

Alberto Coronado, Marcelo A. Trindade, Rubens Sampaio, "Frequency-Dependent Viscoelastic Models for Passive Vibration Isolation Systems", Shock and Vibration, vol. 9, Article ID 862159, 12 pages, 2002. https://doi.org/10.1155/2002/862159

Frequency-Dependent Viscoelastic Models for Passive Vibration Isolation Systems

Received15 Nov 2002
Revised15 Nov 2002

Abstract

Even though there is a growing interest in active vibration isolation systems, passive approaches are still the best choice in many cases because they are inherently the simplest and of lowest cost. Moreover, better comprehension of the dynamics and specially of the damping behavior in passive systems is required for successful implementation of active schemes. In the vast literature of passive isolation systems, there are not many works that consider damping models more elaborated than the widely used complex modulus. In this work a passive isolation system composed of a base and two isolators, modelled as Timoshenko beams, and a vibration source, modelled as a rigid body, is considered. For the isolators, two different viscoelastic models are considered: the Anelastic Displacement Fields (ADF) and Fractional Calculus (FC), which will be compared with the complex modulus model. The results show that both ADF and FC models lead to better approximation of dissipated energy, since they account for frequency-dependence of the viscoelastic isolators. Analysis of the curve-fitting of material parameters, using ADF and FC models has shown that generally less parameters are needed by FC model, for the same fitting quality, although optimization results depends strongly on the initial guess for the solution.

Copyright © 2002 Hindawi Publishing Corporation. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


More related articles

 PDF Download Citation Citation
 Order printed copiesOrder
Views168
Downloads534
Citations

Article of the Year Award: Outstanding research contributions of 2020, as selected by our Chief Editors. Read the winning articles.