Abstract

A two-fluid, computational fluid dynamics study of the phenomena of bubble collapse under a submersed flat plate has been performed. In order to handle the rapidly changing bubble-water interface accurately, second order upwind differencing is used in calculating the advection term. Good agreement with experimental data is obtained for the pressure distribution on the plate. The computational results provide insight into the phenomenology of the jet impact, the formation of a radial hydraulic jump, and the complex interaction of that hydraulic jump with the collapsing toroidal bubble.