Shock and Vibration

Shock and Vibration / 2009 / Article

Open Access

Volume 16 |Article ID 174917 |

Jeng-Wen Lin, Hung-Jen Chen, "Repetitive Identification of Structural Systems Using a Nonlinear Model Parameter Refinement Approach", Shock and Vibration, vol. 16, Article ID 174917, 12 pages, 2009.

Repetitive Identification of Structural Systems Using a Nonlinear Model Parameter Refinement Approach

Received17 Aug 2007
Revised03 Apr 2008


This paper proposes a statistical confidence interval based nonlinear model parameter refinement approach for the health monitoring of structural systems subjected to seismic excitations. The developed model refinement approach uses the 95% confidence interval of the estimated structural parameters to determine their statistical significance in a least-squares regression setting. When the parameters' confidence interval covers the zero value, it is statistically sustainable to truncate such parameters. The remaining parameters will repetitively undergo such parameter sifting process for model refinement until all the parameters' statistical significance cannot be further improved. This newly developed model refinement approach is implemented for the series models of multivariable polynomial expansions: the linear, the Taylor series, and the power series model, leading to a more accurate identification as well as a more controllable design for system vibration control. Because the statistical regression based model refinement approach is intrinsically used to process a “batch” of data and obtain an ensemble average estimation such as the structural stiffness, the Kalman filter and one of its extended versions is introduced to the refined power series model for structural health monitoring.

Copyright © 2009 Hindawi Publishing Corporation. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Related articles

No related content is available yet for this article.
 PDF Download Citation Citation
 Order printed copiesOrder

Article of the Year Award: Outstanding research contributions of 2021, as selected by our Chief Editors. Read the winning articles.