Shock and Vibration

Shock and Vibration / 2009 / Article

Open Access

Volume 16 |Article ID 989146 | 18 pages |

The Dynamics of Multiple Pair-Wise Collisions in a Chain for Designing Optimal Shock Amplifiers

Received21 Feb 2008
Revised14 May 2008


The major focus of this work is to examine the dynamics of velocity amplification through pair-wise collisions between multiple masses in a chain, in order to develop useful machines. For instance low-cost machines based on this principle could be used for detailed, very-high acceleration shock-testing of MEMS devices. A theoretical basis for determining the number and mass of intermediate stages in such a velocity amplifier, based on simple rigid body mechanics, is proposed. The influence of mass ratios and the coefficient of restitution on the optimisation of the system is identified and investigated. In particular, two cases are examined: in the first, the velocity of the final mass in the chain (that would have the object under test mounted on it) is maximised by defining the ratio of adjacent masses according to a power law relationship; in the second, the energy transfer efficiency of the system is maximised by choosing the mass ratios such that all masses except the final mass come to rest following impact. Comparisons are drawn between both cases and the results are used in proposing design guidelines for optimal shock amplifiers. It is shown that for most practical systems, a shock amplifier with mass ratios based on a power law relationship is optimal and can easily yield velocity amplifications of a factor 5–8 times. A prototype shock testing machine that was made using above principles is briefly introduced.

Copyright © 2009 Hindawi Publishing Corporation. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

More related articles

387 Views | 489 Downloads | 16 Citations
 PDF  Download Citation  Citation
 Order printed copiesOrder

Related articles

We are committed to sharing findings related to COVID-19 as quickly and safely as possible. Any author submitting a COVID-19 paper should notify us at to ensure their research is fast-tracked and made available on a preprint server as soon as possible. We will be providing unlimited waivers of publication charges for accepted articles related to COVID-19. Sign up here as a reviewer to help fast-track new submissions.