Shock and Vibration

Shock and Vibration / 2010 / Article
Special Issue

International Conference on Structural Engineering Dynamics – ICEDyn 2009

View this Special Issue

Open Access

Volume 17 |Article ID 907278 | https://doi.org/10.3233/SAV-2010-0555

J.B. Cardoso, P.P. Moita, A.J. Valido, "Multicriteria Optimization of Injury Prevention Systems to Impact", Shock and Vibration, vol. 17, Article ID 907278, 9 pages, 2010. https://doi.org/10.3233/SAV-2010-0555

Multicriteria Optimization of Injury Prevention Systems to Impact

Received18 Jun 2010
Accepted18 Jun 2010

Abstract

A sensitivity analysis and multicriteria control optimization formulation is derived for mechanical systems. This formulation is implemented into an interactive optimum design code and it is applied to optimize protection systems for the prevention of injuries. The limiting isolation capabilities of the systems are determined. The effect of pre-acting control is investigated. Control forces as well as the time at which the control should act before the instant of impact are considered as design variables. The same idea used by the authors in previous articles for minimum time control problems is applied here to find the preview time. Dynamic response index, maximum acceleration, rattlespace, or maximum power of the resisting force among others can be used as performance criteria. In order to handle the multicriteria problem, both the reduced feasible region method and a min-max upper bound method are utilized. The adjoint system approach is used to calculate the sensitivities. The dynamic response of the systems and its sensitivity are discretized via space-time finite elements. The equations of motion and the sensitivity equations are integrated at-once as it is typical for the static response. This way, displacement, velocity or acceleration control conditions can be imposed easily at any point in time. Also, adjoint system response is obtained without needing primary response memorization. Mathematical programming is used for the optimal control process.

Copyright © 2010 Hindawi Publishing Corporation. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


More related articles

396 Views | 288 Downloads | 1 Citation
 PDF Download Citation Citation
 Order printed copiesOrder

Related articles

We are committed to sharing findings related to COVID-19 as quickly as possible. We will be providing unlimited waivers of publication charges for accepted research articles as well as case reports and case series related to COVID-19. Review articles are excluded from this waiver policy. Sign up here as a reviewer to help fast-track new submissions.