Shock and Vibration

Shock and Vibration / 2012 / Article
Special Issue

International Conference on Structural Engineering Dynamics – ICEDyn 2011

View this Special Issue

Open Access

Volume 19 |Article ID 257608 |

Piotr Koziol, M.M. Neves, "Multilayered Infinite Medium Subject to a Moving Load: Dynamic Response and Optimization Using Coiflet Expansion", Shock and Vibration, vol. 19, Article ID 257608, 10 pages, 2012.

Multilayered Infinite Medium Subject to a Moving Load: Dynamic Response and Optimization Using Coiflet Expansion

Received25 Apr 2012
Accepted25 Apr 2012


A wavelet based approach is proposed in this paper for analysis and optimization of the dynamical response of a multilayered medium subject to a moving load with respect to the material properties and thickness of supporting half-space. The investigated model consists of a load moving along a beam resting on a surface of a multilayered medium with infinite thickness and layers with different physical properties. The theoretical model is described by the Euler-Bernoulli equation for the beam and the Navier's elastodynamic equation of motion for a viscoelastic half-space. The moving load is modelled by a finite series of distributed harmonic loads. A special method based on a wavelet expansion of functions in the transform domain is adopted for calculation of displacements in the physical domain. The interaction between the beam and the multilayered medium is analyzed in order to obtain the vibration response at the surface and the critical velocities associated. The choice of the specific values of the design parameters for each layer, which minimize the vibration response of the multilayered medium, can be seen as a structural optimization problem. A first approach for using optimization techniques to explore the potential of the wavelet model is presented and briefly discussed. Results from the analysis of the vibration response are presented to illustrate the dynamic characterization obtained by using this method. Numerical examples reflecting the results of numerical optimizations with respect to a multilayered medium parameters are also presented.

Copyright © 2012 Hindawi Publishing Corporation. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Related articles

No related content is available yet for this article.
 PDF Download Citation Citation
 Order printed copiesOrder

Article of the Year Award: Outstanding research contributions of 2021, as selected by our Chief Editors. Read the winning articles.